toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Walitt, A.; Jasinski, R.; Keilin, B. openurl 
  Title Silicate treatment of coal mine refuse piles Type Journal Article
  Year 1970 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; coal; economics; environmental geology; methods; mining; organic residues; pollution; prevention; sedimentary rocks; sodium silicate; solutions; treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0085-7068 ISBN Medium  
  Area Expedition Conference  
  Notes Silicate treatment of coal mine refuse piles; 1976-011512; United States (USA); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6853 Serial 221  
Permanent link to this record
 

 
Author Stark, L.R.; Williams, F.M. openurl 
  Title The roles of spent mushroom substrate for the mitigation of coal mine drainage Type Journal Article
  Year 1994 Publication Compost Science and Utilization Abbreviated Journal  
  Volume 2 Issue 4 Pages 84-94  
  Keywords acid mine drainage rehabilitation coal mining spent mushroom substrate 3 Geology  
  Abstract Spent mushroom substrate (SMS) has been used widely in coal mining regions of the USA as the primary substrate in constructed wetlands for the treatment of coal mine drainage. In laboratory and mesocosm studies, SMS has emerged as one of the substrates for mine water treatment. Provided the pH of the mine water does not fall below 3.0, SMS can be used in the mitigation plan. However, neither Mn nor dissolved ferric Fe appears to be treatable using reducing SMS wetlands. Since after a few years much of the nonrefractive organic carbon in SMS wil have been decomposed and metabolized, carbon supplementation can significantly extend the life of the SMS treatment wetland and improve water treatment. -from Authors  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The roles of spent mushroom substrate for the mitigation of coal mine drainage; (1099507); 95k-07480; Using Smart Source Parsing pp; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17639 Serial 233  
Permanent link to this record
 

 
Author Scharp, R.A.; Kawahara, F.; Burckle, J.; Allan, J.; Govind, R. openurl 
  Title Recovery of metals from acid mine drainage Hardrock mining 2002; issues shaping the industry Type Book Chapter
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; bacteria; Berkeley Pit; Butte Montana; cost; decontamination; metals; mining; Montana; pH; pollution; recovery; remediation; Silver Bow County Montana; smelting; sulfates; United States 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recovery of metals from acid mine drainage Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046147; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no  
  Call Number CBU @ c.wolke @ 5614 Serial 251  
Permanent link to this record
 

 
Author Rammlmair, D.; Grissemann, C. isbn  openurl
  Title Natural attenuation in slag heaps versus remediation Type Book Chapter
  Year 2000 Publication Applied mineralogy in research, economy, technology, ecology and culture Abbreviated Journal  
  Volume Issue Pages 645-648  
  Keywords acid mine drainage; alteration; concentration; concepts; crust; deposition; design; development; diagenesis; exhalative processes; fines; fluvial features; ground water; leaching; metallurgy; mining; mining geology; mobilization; natural attenuation; physicochemical properties; Plantae; pollution; precipitation; remediation; rivers; slag; time scales; toxic materials; transportation; volatiles; wind transport 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor Rammlmair, D.; Mederer, J.; Oberthuer, T.; Heimann, R.B.; Pentinghaus, H.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9058091643 Medium  
  Area Expedition Conference  
  Notes Natural attenuation in slag heaps versus remediation; GeoRef; English; 2007-039910; Sixth international congress on Applied mineralogy in research, economy, technology, ecology, and culture, Gottingen, Federal Republic of Germany, July 17-19, 2000 References: 5; illus. Approved no  
  Call Number CBU @ c.wolke @ 5864 Serial 266  
Permanent link to this record
 

 
Author Okuda, T.; Ema, S.; Ishizaki, C.; Fujimoto, J. openurl 
  Title Mine drainage treatment and ferrite sludge application Type Journal Article
  Year 1991 Publication NEC Technical Journal Abbreviated Journal  
  Volume 44 Issue 5 Pages 4-16  
  Keywords ferrite applications mining water treatment mine drainage treatment waste water treatment ions metal recovery catalysts environmental problems solution ferrite sludge application iron oxidation bacteria ferrite formation process mine drainage Matsuo Mine magnetic marking materials magnetic fluid metal separation semiactive magnetic damper batteries fish gathering cement tracer Electrical and Electronic Engineering Manufacturing and Production  
  Abstract The `ferrite process' is an excellent method for treating waste water containing iron and arsenic, but cannot be directly applied to mine drainage where silicon and aluminum ions are present, because they strongly inhibit ferrite formation. As a result of the development of related technologies such as the elimination of silicon, the concentration of iron, and the oxidation of ferrous ions using iron-oxidation bacteria, a new ferrite formation process has been developed and applied to the mine drainage of the Matsuo Mine. The paper discusses the application of the ferrite sludge to magnetic marking materials, magnetic fluid for metal separation and recovery, and the semiactive magnetic damper is described. The related technologies which will be expected to play an important role in solving the environmental problems are also described. These technologies will change the ferrite sludge to beneficial materials, which can be used for carbon dioxide decomposing catalysts, reuse of dry batteries, fish gathering blocks, and cement tracer for ground improvement  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0285-4139 ISBN Medium  
  Area Expedition Conference  
  Notes Mine drainage treatment and ferrite sludge application; 3991072; Journal Paper; SilverPlatter; Ovid Technologies Approved no  
  Call Number CBU @ c.wolke @ 16787 Serial 279  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: