toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Adam, K. openurl 
  Title Solid wastes management in sulphide mines: From waste characterisation to safe closure of disposal sites Type Journal Article
  Year 2003 Publication (up) Minerals and Energy Raw Materials Report Abbreviated Journal  
  Volume 18 Issue 4 Pages 25-35  
  Keywords Waste Management and Pollution Policy Pollution and waste management non radioactive geographical abstracts: human geography environmental planning (70 11 5) geological abstracts: environmental geology (72 14 2) waste disposal waste management solid waste mining industry acid mine drainage Europe Eurasia  
  Abstract Environmentally compatible Waste Management schemes employed by the European extractive industry for the development of new projects, and applied in operating sulphide mines, are presented in this study. Standard methodologies used to assess the geotechnical and geochemical properties of the solid wastes stemming from mining and processing of sulphidic metal ores are firstly given. Based on waste properties, the measures applied to ensure the environmentally safe recycling and disposal of sulphidic wastes are summarised. Emphasis is given on the novel techniques developed to effectively prevent and mitigate the acid drainage phenomenon from sulphidic mine wastes and tailings. Remediation measures taken to minimise the impact from waste disposal sites in the post-closure period are described.  
  Address K. Adam, ECHMES Ltd, Mikras Asias 40-42, Athens 11527, Greece echmes@otenet.gr  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1404-1049 ISBN Medium  
  Area Expedition Conference  
  Notes Solid wastes management in sulphide mines: From waste characterisation to safe closure of disposal sites; 2582509; Norway 25; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17510 Serial 492  
Permanent link to this record
 

 
Author Potgieter-Vermaak, S.S.; Potgieter, J.H.; Monama, P.; Van Grieken, R. url  openurl
  Title Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage Type Journal Article
  Year 2006 Publication (up) Minerals Engineering Abbreviated Journal  
  Volume 19 Issue 5 Pages 454-462  
  Keywords Acid rock drainage Mining Tailings Environmental  
  Abstract The physical, chemical and biological nature of Vaal Dam water, the main source of water in Gauteng, South Africa, is often affected by underground water pollution (acid mine water) and industrial effluents. The ecological significance and detrimental effects necessitate investigations into treating the water prior to discharge into public streams. Although several acid mine water treatment techniques and methods exist, they all have certain disadvantages. Lime treatment is the most common approach. In this investigation, limestone, dolomite and fly ash were selected as pre-treatment agents based on their low cost. Simulated acid mine water containing these agents was tested using a Jar Test apparatus. Samples were analyzed before and after treatment for pH, ferrous, ferric, calcium, magnesium and sulphate ions. The study demonstrated that the quality of the water improved with an increase in the amount and surface area of the raw material dosed and an increase in contact time. It was also influenced by the chemical composition of the acid mine water and aeration. Chemical cost savings of 38% are achieved when lime is replaced with limestone, and cost savings of 23% and 48% can be accomplished when limestone is substituted with dolomite and fly ash respectively. This could result in significant savings to the gold and coal mining industries, and could lead to a mutual benefit/gain between industrialists/polluters and the public.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0892-6875 ISBN Medium  
  Area Expedition Conference  
  Notes Apr.; Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17461 Serial 42  
Permanent link to this record
 

 
Author Okuda, T.; Ema, S.; Ishizaki, C.; Fujimoto, J. openurl 
  Title Mine drainage treatment and ferrite sludge application Type Journal Article
  Year 1991 Publication (up) NEC Technical Journal Abbreviated Journal  
  Volume 44 Issue 5 Pages 4-16  
  Keywords ferrite applications mining water treatment mine drainage treatment waste water treatment ions metal recovery catalysts environmental problems solution ferrite sludge application iron oxidation bacteria ferrite formation process mine drainage Matsuo Mine magnetic marking materials magnetic fluid metal separation semiactive magnetic damper batteries fish gathering cement tracer Electrical and Electronic Engineering Manufacturing and Production  
  Abstract The `ferrite process' is an excellent method for treating waste water containing iron and arsenic, but cannot be directly applied to mine drainage where silicon and aluminum ions are present, because they strongly inhibit ferrite formation. As a result of the development of related technologies such as the elimination of silicon, the concentration of iron, and the oxidation of ferrous ions using iron-oxidation bacteria, a new ferrite formation process has been developed and applied to the mine drainage of the Matsuo Mine. The paper discusses the application of the ferrite sludge to magnetic marking materials, magnetic fluid for metal separation and recovery, and the semiactive magnetic damper is described. The related technologies which will be expected to play an important role in solving the environmental problems are also described. These technologies will change the ferrite sludge to beneficial materials, which can be used for carbon dioxide decomposing catalysts, reuse of dry batteries, fish gathering blocks, and cement tracer for ground improvement  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0285-4139 ISBN Medium  
  Area Expedition Conference  
  Notes Mine drainage treatment and ferrite sludge application; 3991072; Journal Paper; SilverPlatter; Ovid Technologies Approved no  
  Call Number CBU @ c.wolke @ 16787 Serial 279  
Permanent link to this record
 

 
Author Dillard, G. openurl 
  Title A win-win way to clean up by changing ionic state, new process can precipitate heavy metals Type Journal Article
  Year 2000 Publication (up) Pay Dirt Abbreviated Journal  
  Volume 734 Issue Pages 10-11  
  Keywords acid mine drainage; California; chemical composition; companies; environmental analysis; environmental management; heavy metals; ion exchange; ions; metal ores; metals; mining; pollutants; pollution; precipitation; processes; remediation; soils; surface water; United States; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes A win-win way to clean up by changing ionic state, new process can precipitate heavy metals; 2004-029026; illus. United States (USA); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5822 Serial 401  
Permanent link to this record
 

 
Author Goodman, G.T. openurl 
  Title Ecology and the problems of rehabilitating wastes from mineral extraction Type Journal Article
  Year 1974 Publication (up) Proceedings of the Royal Society of London, Series A Mathematical and Physical Sciences Abbreviated Journal  
  Volume 339 Issue 1618 Pages 373-387  
  Keywords minerals mining natural resources pollution waste disposal ecology mineral extraction visual ugliness health hazards safety hazards reclamation process development planning site purchase land clearance land forming stabilisation drainage revegetation rehabilitation of wastes Physics Manufacturing and Production  
  Abstract Environmental problems which may be associated with mineral extraction are: (a) the visual ugliness of open pits, waste tips, and working mess; (b) the nuisance of wind- and water-borne dusts; (c) the health hazards to wildlife, crops, livestock and man of locally increased environmental burdens of potentially toxic metals (e.g. Pb, Cd, As, Zn, Cu, Ni) derived from wind- and water-borne mine dusts and smelter smokes; (d) the safety hazards of surface subsidence and tip-slippage from deep-mining. All these disamenities can be cured or reduced by the reclamation process which involves a blend of socio-economic, legal, planning, civil engineering and biological expertise devoted to development planning, site purchase, land clearance, land forming, stabilization, drainage and revegetation of the affected site  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0080-4630 ISBN Medium  
  Area Expedition Conference  
  Notes Ecology and the problems of rehabilitating wastes from mineral extraction; 669765; Conference Paper; Journal Paper; SilverPlatter; Ovid Technologies Approved no  
  Call Number CBU @ c.wolke @ 16789 Serial 369  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: