toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Diamond, J.M.; Bower, W.; Gruber, D. doi  openurl
  Title Use of man-made impoundment in mitigating acid mine drainage in the North Branch Potomac River Type Journal Article
  Year 1993 Publication Environ. Manage. Abbreviated Journal  
  Volume 17 Issue Pages 14  
  Keywords Acid mine drainage Potomac River Reservoir macroinvertebrate Fish Mayflies  
  Abstract The US Department of the Army, Baltimore District Corps of Engineers, oversees a long-term monitoring study to assess and evaluate effects of the Jennings-Randolph reservoir on biota in the North Branch Potomac River. The reservoir was intended, in part, to mitigate effects of acid mine drainage originating in upstream and headwater areas. The present study assessed recovery of benthos and fish in this system, six years after completion of the reservoir. Higher pH and lower iron and sulfate concentrations were observed upstream of the reservoir compared to preimpoundment conditions, suggesting better overall water quality in the upper North Branch. Water quality improved slightly directly downstream of the reservoir. However, the reservoir itself was poorly colonized by macrophytes and benthic organisms, and plankton composition suggested either metal toxicity and/or nutrient limitation. One large tributary to the North Branch and the reservoir (Stony River) was shown to have high (and possibly toxic) levels of manganese, iron, zinc, and aluminum due to subsurface coal mine drainage. Macroinvertebrate diversity and number of taxa were higher in sites downstream of the reservoir in the present study. Compared with previous years, the present study suggested relatively rapid recovery in the lower North Branch due to colonization from two major unimpacted tributaries in this system: Savage River and South Branch Potomac. Abundance of certain mayfly species across sites provided the most clear evidence of longitudinal gradients in water quality parameters and geomorphology. Fish data were consistent with macroinvertebrate results, but site-to-site variation in species composition was greater. Data collected between 1982 and 1987 suggested that certain fish species have unsuccessfully attempted to colonize sites directly downstream of the reservoir despite the more neutral pH water there. Our results show that recovery of biota in the North Branch Potomac was attributed to decreased acid inputs from mining operations and dilution from the Savage River, which contributed better water quality. Continued improvement of North Branch Potomac biota may not be expected unless additional mitigation attempts, either within the reservoir or upstream, are undertaken.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0364-152x ISBN Medium  
  Area Expedition Conference  
  Notes Feb.; Use of man-made impoundment in mitigating acid mine drainage in the North Branch Potomac River; New York, NY ; Heidelberg ; Berlin : Springer; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7016.pdf; Opac Approved no  
  Call Number CBU @ c.wolke @ 7016 Serial 79  
Permanent link to this record
 

 
Author Cravotta, C.A., III; Watzlaf, G.R.; Naftz, D.L.; Morrison, S.J.; Fuller, C.C.; Davis, J.A. url  isbn
openurl 
  Title Design and performance of limestone drains to increase pH and remove metals from acidic mine drainage Handbook of groundwater remediation using permeable reactive barriers; applications to radionuclides, trace metals, and nutrients Type Book Chapter
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; alkaline earth metals; aquatic environment; aquifers; calcium; carbonate rocks; chemical properties; construction; construction materials; crushed stone; dissolved materials; drainage; effluents; ground water; limestone; magnesium; metals; pH; pollution; porous materials; precipitation; retention; saturation; sedimentary rocks; sulfate ion; suspended materials 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication Amsterdam Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0125135637 Medium  
  Area Expedition Conference  
  Notes Design and performance of limestone drains to increase pH and remove metals from acidic mine drainage Handbook of groundwater remediation using permeable reactive barriers; applications to radionuclides, trace metals, and nutrients; GeoRef; English; 2004-040518; References: 66; illus. incl. 4 tables Approved no  
  Call Number CBU @ c.wolke @ 5686 Serial 81  
Permanent link to this record
 

 
Author Karathanasis, A.D.; Barton, C.D. url  isbn
openurl 
  Title The revival of a failed constructed wetland treating a high Fe load AMD Type Book Chapter
  Year 1999 Publication Proceedings; biogeochemistry of trace elements in coal and coal combustion byproducts Abbreviated Journal  
  Volume Issue Pages  
  Keywords abandoned mines acid mine drainage anaerobic environment carbonate rocks characterization composting constructed wetlands design environmental analysis ferrihydrite geologic hazards hydrology hydroxides iron iron hydroxides Kentucky limestone metals minerals mines organic compounds oxides pollution remediation runoff sedimentary rocks sediments solubility sulfate ion United States water quality water treatment wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Kluwer Academic/Plenum Publishers Place of Publication New York Editor Sajwan, K.S.; Alva, A.K.; Keefer, R.F.  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0306462885 Medium  
  Area Expedition Conference  
  Notes The revival of a failed constructed wetland treating a high Fe load AMD; GeoRef; English; 2002-039561; Fourth international conference on the Biogeochemistry of trace elements, Berkeley, CA, United States, June 23, 1997 References: 45; illus. incl. 2 tables, sketch maps Approved no  
  Call Number CBU @ c.wolke @ 16571 Serial 82  
Permanent link to this record
 

 
Author Younger, P.L. url  openurl
  Title Holistic remedial strategies for short- and long-term water pollution from abandoned mines Type Journal Article
  Year 2000 Publication Transactions of the Institution of Mining and Metallurgy Section a-Mining Technology Abbreviated Journal  
  Volume 109 Issue Pages A210-A218  
  Keywords abandoned mines acid mine drainage Europe mines mining planning pollution remediation United Kingdom water pollution Western Europe  
  Abstract Where mining proceeds below the water-table-as it has extensively in Britain and elsewhere-water ingress is not only a hindrance during mineral extraction but also a potential liability after abandonment. This is because the cessation of dewatering that commonly follows mine closure leads to a rise in the water-table and associated, often rapid, changes in the chemical regime of the subsurface. Studies over the past two decades have provided insights into the nature and time-scales of these changes and provide a basis for rational planning of mine-water management during and after mine abandonment. The same insights into mine-water chemistry provide hints for the efficient remediation of pollution (typically due to Fe, Mn and Al and, in some cases, Zn, Cd, Pb and other metals). Intensive treatment (by chemical dosing with enhanced sedimentation or alternative processes, such as sulphidization or reverse osmosis) is often necessary only during the first few years following complete flooding of mine voids. Passive treatment (by the use of gravity-flow geochemical reactors and wetlands) may be both more cost-effective and ecologically more responsible in the long term. By the end of 1999 a total of 28 passive systems had been installed at United Kingdom mine sites, including examples of system types currently unique to the United Kingdom. Early performance data for all the systems are summarized and shown to demonstrate the efficacy of passive treatment when appropriately applied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0371-7844 ISBN Medium  
  Area Expedition Conference  
  Notes Holistic remedial strategies for short- and long-term water pollution from abandoned mines; Wos:000167240600013; Times Cited: 2; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17458 Serial 126  
Permanent link to this record
 

 
Author Stewart, D.; Norman, T.; Cordery-Cotter, S.; Kleiner, R.; Sweeney, E.; Nelson, J.D. url  openurl
  Title Utilization of a ceramic membrane for acid mine drainage treatment Type Journal Article
  Year 1997 Publication Tailings and Mine Waste '97 Abbreviated Journal  
  Volume Issue Pages 453-460  
  Keywords acid mine drainage; Black Hawk Colorado; Central City Colorado; ceramic materials; Colorado; cost; disposal barriers; geochemistry; Gilpin County Colorado; heavy metals; mines; organic compounds; pollution; remediation; surface water; tailings; United States; utilization; volatile organic compounds; volatiles; waste disposal mine water treatment  
  Abstract BASX Systems LLC has developed a treatment system based on ceramic membranes for the removal of heavy metals from an acid mine drainage stream. This stream also contained volatile organic compounds that were required to be removed prior to discharge to a Colorado mountain stream. The removal of heavy metals was greater than 99% in most cases. A decrease of 30% in chemicals required for treatment and a reduction by more than 75% in labor over a competing technology were achieved. These decreases were obtained for operating temperatures of less than 5 degrees C. This system of ceramic microfiltration is capable of treating many different types of acid mine waste streams for heavy metals removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 90-5410-857-6 ISBN Medium  
  Area Expedition Conference  
  Notes Jan 13-17; Utilization of a ceramic membrane for acid mine drainage treatment; Isip:A1997bg96u00050; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8744 Serial 135  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: