toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Puls, R.W. url  openurl
  Title Treatment of dissolved metals using permeable reactive barriers Type Journal Article
  Year 1998 Publication Groundwater Quality: Remediation and Protection Abbreviated Journal  
  Volume Issue (down) 250 Pages 483-490  
  Keywords adsorption; aquifers; attenuation; dissolved materials; metals; nutrients; oxidation; pollutants; pollution; precipitation; reduction; water treatment Groundwater quality Pollution and waste management non radioactive Groundwater acid mine drainage aquifer pollution conference proceedings containment barrier metal tailings Canada Ontario Nickel Rim Mine United States North Carolina Elizabeth City mine water treatment  
  Abstract Permeable reactive barriers are a promising new approach to the treatment of dissolved contaminants in aquifers. This technology has progressed rapidly from laboratory studies to full-scale implementation over the past decade. Laboratory treatability studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4, and SO4. Small scale field studies have indicated the potential for treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4, and SO4. Permeable reactive barriers have been used in full-scale installations for the treatment of hexavalent chromium, dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn, and dissolved nutrients, including nitrate and phosphate. A full-scale barrier designed to prevent the release of contaminants associated with inactive mine tailings impoundment was installed at the Nickel Rim mine site in Canada in August 1995. This reactive barrier removes Fe, SO,, Ni and other metals. The effluent from the barrier is neutral in pH and contains no acid-generating potential, and dissolved metal concentrations are below regulatory guidelines. A full-scale reactive barrier was installed to treat Cr(VI) and halogenated hydrocarbons at the US Coast Guard site in Elizabeth City, North Carolina, USA in June 1996. This barrier removes Cr(VI) from >8 mg l(-1) to <0.01 mg l(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0144-7815 ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of dissolved metals using permeable reactive barriers; Isip:000079718200072; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8601 Serial 178  
Permanent link to this record
 

 
Author Evangelou, V.P. url  openurl
  Title Pyrite microencapsulation technologies: Principles and potential field application Type Journal Article
  Year 2001 Publication Ecological Engineering Abbreviated Journal  
  Volume 17 Issue (down) 2-3 Pages 165-178  
  Keywords mine water treatment Acid mine drainage Acidity Alkalinity Amelioration Coating Oxidation Surface reactions  
  Abstract In nature, pyrite is initially oxidized by atmospheric O2, releasing acidity and Fe2+. At pH below 3.5, Fe2+ is rapidly oxidized by T. ferrooxidans to Fe3+, which oxidizes pyrite at a much faster rate than O2. Commonly, limestone is used to prevent pyrite oxidation. This approach, however, has a short span of effectiveness because after treatment the surfaces of pyrite particles remain exposed to atmospheric O2 and oxidation continuous abiotically. Currently, a proposed mechanism for explaining non-microbial pyrite oxidation in high pH environments is the involvement of OH- in an inner-sphere electron-OH exchange between pyrite/surface-exposed disulfide and pyrite/surface-Fe(III)(OH)n3-n complex and/or formation of a weak electrostatic pyrite/surface-CO3 complex which enhances the chemical oxidation of Fe2+. The above infer that limestone application to pyritic geologic material treats only the symptoms of pyrite oxidation through acid mine drainage neutralization but accelerates non-microbial pyrite oxidation. Therefore, only a pyrite/surface coating capable of inhibiting O2 diffusion is expected to control long-term oxidation and acid drainage production. The objective of this study was to examine the feasibility in controlling pyrite oxidation by creating, on pyrite surfaces, an impermeable phosphate or silica coating that would prevent either O2 or Fe3+ from further oxidizing pyrite. The mechanism underlying this coating approach involves leaching mine waste with a coating solution composed of H2O2 or hypochlorite, KH2PO4 or H4SiO4, and sodium acetate (NaAC) or limestone. During the leaching process, H2O2 or hypochlorite oxidizes pyrite and produces Fe3+ so that iron phosphate or iron silicate precipitates as a coating on pyrite surfaces. The purpose of NaAC or limestone is to eliminate the inhibitory effect of the protons (produced during pyrite oxidation) on the precipitation of iron phosphate or silicate and to generate iron-oxide pyrite coating, which is also expected to inhibit pyrite oxidation. The results showed that iron phosphate or silicate coating could be established on pyrite by leaching it with a solution composed of: (1) H2O2 0.018-0.16 M; (2) phosphate or silicate 10-3 to 10-2 M; (3) coating-solution pH [approximate]5-6; and (4) NaAC as low as 0.01 M. Leachates from column experiments also showed that silicate coatings produced the least amount of sulfate relative to the control, limestone and phosphate treatments. On the other hand, limestone maintained the leachate near neutral pH but produced more sulfate than the control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8574 ISBN Medium  
  Area Expedition Conference  
  Notes July 01; Pyrite microencapsulation technologies: Principles and potential field application; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10063.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 10063 Serial 37  
Permanent link to this record
 

 
Author Bertrand, S. url  openurl
  Title Performance of a nanofiltration plant on hard and highly sulphated water during two years of operation Type Journal Article
  Year 1997 Publication Desalination Abbreviated Journal  
  Volume 113 Issue (down) 2-3 Pages 277-281  
  Keywords mine water treatment  
  Abstract A highly sulphated, hard water from a flooded iron mine was treated by nanofiltration for the production of drinking water (125 m(3)/h). This paper introduces the context and summarizes the configuration and operating conditions of the plant. The process performance in terms of product water quality and permeability during the first 2 years is presented and discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Performance of a nanofiltration plant on hard and highly sulphated water during two years of operation; Wos:000071218200023; Times Cited: 5; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17153 Serial 134  
Permanent link to this record
 

 
Author Banks, S.B. url  openurl
  Title The UK coal authority minewater-treatment scheme programme: Performance of operational systems Type Journal Article
  Year 2003 Publication Jciwem Abbreviated Journal  
  Volume 17 Issue (down) 2 Pages 117-122  
  Keywords mine water treatment  
  Abstract This paper summarises the performance of minewater-treatment schemes which are operated under the Coal Authority's National Minewater Treatment Programme. Commonly-used design criteria and performance indicators are briefly discussed, and the performance of wetland systems which are operated by the Coal Authority is reviewed. Most schemes for which data are available remove more than 90% iron, and average area-adjusted iron-removal rates range from 1.5 to 5.5 g Fe/m(2). d. These values, which are based on performance calculations, can be distorted by several factors, including the practice of maximising wetland areas to make best use of available land. Removal rates are limited by influent iron loadings, and area-adjusted iron-removal rates should be used with caution when assessing wetland performance. Sizing criteria for all types of treatment system might be refined if more detailed data become available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-7359 ISBN Medium  
  Area Expedition Conference  
  Notes May; The UK coal authority minewater-treatment scheme programme: Performance of operational systems; Wos:000183641000009; Times Cited: 1; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10018.pdf; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17457 Serial 9  
Permanent link to this record
 

 
Author Juby, G.J.G.; Schutte, C.F. url  openurl
  Title Membrane Life in a Seeded-slurry Reverse Osmosis System Type Journal Article
  Year 2000 Publication Water Sa Abbreviated Journal  
  Volume 26 Issue (down) 2 Pages 239-248  
  Keywords mine water treatment desalination  
  Abstract Membrane replacement can be a major operating cost of a membrane plant. During the development of a novel desalination technique (the SPARRO process) for treating calcium sulphate scaling mine waters the expected life of tubular cellulose acetate membranes operating in the seeded-slurry mode was investigated.During four operating phases of the plant over a five-year period more than 9 000 h of operating data were obtained. Performance data showed that each operating phase was dominated by either membrane fouling or membrane hydrolysis. Membrane fouling was observed to begin near the front-end of the membrane stack and proceed towards the back. Hydrolysis, on the other hand, occurred first in the tail end of the stack and moved backwards towards the Front end modules. Although two detailed membrane autopsies were carried out no definitive statement can be made in respect of the causes of either membrane hydrolysis or membrane fouling. However, suggestions are presented to explain the observed fouling phenomenon in relation to the turbidity of the pretreated feed water and the presence of chlorine. It is proposed that the presence of radioactive isotopes in the mine water which become concentrated in the process contributes to the observed membrane hydrolysis. A membrane life of up to two years is projected for an improved pretreatment arrangement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4738 ISBN Medium  
  Area Expedition Conference  
  Notes Membrane Life in a Seeded-slurry Reverse Osmosis System; Isi:000087101400013; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9715.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9715 Serial 8  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: