toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cravotta, C.A., III; Watzlaf, G.R.; Naftz, D.L.; Morrison, S.J.; Fuller, C.C.; Davis, J.A. url  isbn
openurl 
  Title Design and performance of limestone drains to increase pH and remove metals from acidic mine drainage Handbook of groundwater remediation using permeable reactive barriers; applications to radionuclides, trace metals, and nutrients Type Book Chapter
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; alkaline earth metals; aquatic environment; aquifers; calcium; carbonate rocks; chemical properties; construction; construction materials; crushed stone; dissolved materials; drainage; effluents; ground water; limestone; magnesium; metals; pH; pollution; porous materials; precipitation; retention; saturation; sedimentary rocks; sulfate ion; suspended materials 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author (up) Thesis  
  Publisher Academic Press Place of Publication Amsterdam Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0125135637 Medium  
  Area Expedition Conference  
  Notes Design and performance of limestone drains to increase pH and remove metals from acidic mine drainage Handbook of groundwater remediation using permeable reactive barriers; applications to radionuclides, trace metals, and nutrients; GeoRef; English; 2004-040518; References: 66; illus. incl. 4 tables Approved no  
  Call Number CBU @ c.wolke @ 5686 Serial 81  
Permanent link to this record
 

 
Author Watzlaf, G.R.; Schroeder, K.T.; Kairies, C.L. openurl 
  Title Type Book Whole
  Year 2000 Publication Abbreviated Journal  
  Volume Issue Pages 262-274  
  Keywords passive treatment anoxic limestone drains wetlands sulfate reduction successive alkalinity-producing systems acid mine drainage ALD SAPS RAPS  
  Abstract Ten passive treatment systems, located in Pennsylvania and Maryland, have been intensively monitored for up to ten years. Influent and effluent water quality data from ten anoxic limestone drains (ALDs) and six reducing and alkalinity-producing systems (RAPS) have been analyzed to determine long-term performance for each of these specific unit operations. ALDs and RAPS are used principally to generate alkalinity, ALDs are buried beds of limestone that add alkalinity through dissolution of calcite. RAPS add alkalinity through both limestone dissolution and bacterial sulfate reduction. ALDs that received mine water containing less than 1 mg/L of both ferric iron and aluminum have continued to produce consistent concentrations of alkalinity since their construction. However, an ALD that received 20 mg/L of aluminum experienced a rapid reduction in permeability and failed within five months. Maximum levels of alkalinity (between 150 and 300 m&) appear to be reached after I5 hours of retention. All but one RAPS in this study have been constructed and put into operation only within the past 2.5 to 5 years. One system has been in operation and monitored for more than nine years. AIkalinity due to sulfate reduction was highest during the first two summers of operation. Alkalinity due to a limestone dissolution has been consistent throughout the life of the system. For the six RAPS in this study, sulfate reduction contributed an average of 28% of the total alkalinity. Rate of total alkalinity generation range from 15.6 gd''rn-'to 62.4 gd-'mL2 and were dependent on influent water quality and contact time.  
  Address  
  Corporate Author (up) Thesis  
  Publisher Place of Publication Tampa Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings, 17th Annual National Meeting – American Society for Surface Mining and Reclamation Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Long-Term Perpormance of Alkalinity-Producing Passive Systems for the Treatment of Mine Drainage; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb., 5 Tab. Approved no  
  Call Number CBU @ c.wolke @ 17440 Serial 216  
Permanent link to this record
 

 
Author Hedin, R.S.; Watzlaf, G.R.; Nairn, R.W. openurl 
  Title Passive treatment of acid-mine drainage with limestone Type Journal Article
  Year 1994 Publication J. Environ. Qual. Abbreviated Journal  
  Volume 23 Issue 6 Pages 1338-1345  
  Keywords Carbonate ALD  
  Abstract The water treatment performances of two anoxic limestone drains (ALDs) were evaluated. Anoxic limestone drains are buried beds of Limestone that are intended to add bicarbonate alkalinity to flow-through acid mine drainage. Both ALDs received mine water contaminated with Fe2+ (216-279 mg L(-1)) and Mn (41-51 mg L(- 1)). Flow through the Howe Bridge ALD increased alkalinity by an average 128 mg L(-1) (CaCO3 equivalent) and Ca by 52 mg L(- 1), while concentrations of Fe, K, Mg, Mn, Na, and SO42- were unchanged. The Morrison ALD increased alkalinity by an average 248 mg L(-1) and Ca by 111 mg L(-1). Concentrations of K, Mg, Mn, and SO42- all decreased by an average 17%, an effect attributed to dilution with uncontaminated water. Iron, which decreased by 30%, was partially retained within the Morrison ALD. Calcite dissolution was enhanced at both sites by high P- CO2. Untreated mine waters at the Howe Bridge and Morrison sites had average calculated P-CO2 values of 6.39 kPa (10(- 1.20) atm) and 9.24 kPa (10(-1.04) atm), respectively. At both sites, concentrations of bicarbonate alkalinity stabilized at undersaturated values (SICalcite = 10(-1.2) at Howe Bridge and 10(-0.8) at Morrison) after flowing through approximately half of the limestone beds. Flow through the second half of each ALD had little additional effect on mine water chemistry. At the current rates of calcite solubilization, 17.9 kg d(-1) CaCO3 at Howe Bridge and 2.7 kg d(-1) CaCO3 at Morrison, the ALDs have theoretical effective lifetimes in excess of 20 yr. By significantly increasing alkalinity concentrations in the mine waters; both ALDs increased metal removal in downstream constructed wetlands.  
  Address  
  Corporate Author (up) Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0047-2425 ISBN Medium  
  Area Expedition Conference  
  Notes Passive treatment of acid-mine drainage with limestone; 2; ISI:A1994PR00300029 als Datei vorhanden 3 Abb., 6 Tab.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17352 Serial 354  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: