toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kuyucak, N. openurl 
  Title Acid mine drainage; treatment options for mining effluents Type Journal Article
  Year 2001 Publication Mining Environmental Management Abbreviated Journal  
  Volume (down) 9 Issue 2 Pages 12-15  
  Keywords acid mine drainage; alkalinity; cadmium; chemical reactions; copper; cyanides; decontamination; degradation; effluents; flotation; heavy metals; lead; lime; metals; mines; nickel; oxidation; pH; physicochemical properties; pollution; reagents; reduction; remediation; seepage; sludge; solid waste; solvents; stability; tailings; toxic materials; toxicity; waste disposal; water quality; zinc  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-4218 ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage; treatment options for mining effluents; 2001-050827; References: 23; illus. United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5723 Serial 324  
Permanent link to this record
 

 
Author Johnson, D.B.; Hallberg, K.B. openurl 
  Title Pitfalls of passive mine water treatment Type Journal Article
  Year 2002 Publication Reviews in Environmental Science & Biotechnology Abbreviated Journal  
  Volume (down) 1 Issue 5 Pages 335-343  
  Keywords acid mine drainage acidophilic microorganisms heavy metals iron oxidation iron reduction remediation sulfate reduction wetlands Wheal Jane  
  Abstract Passive (wetland) treatment of waters draining abandoned and derelict mine sites has a number of detrac-tions. Detailed knowledge of many of the fundamental processes that dictate the performance and longevity of constructed systems is currently very limited and therefore more research effort is needed before passive treatment becomes an “off-the-shelf” technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-1705 ISBN Medium  
  Area Expedition Conference  
  Notes Dec.; Pitfalls of passive mine water treatment; 2; FG als Datei vorhanden 4 Abb., 1 Tab.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 10138 Serial 336  
Permanent link to this record
 

 
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Puls, R.W. url  openurl
  Title Treatment of dissolved metals using permeable reactive barriers Type Journal Article
  Year 1998 Publication Groundwater Quality: Remediation and Protection Abbreviated Journal  
  Volume (down) Issue 250 Pages 483-490  
  Keywords adsorption; aquifers; attenuation; dissolved materials; metals; nutrients; oxidation; pollutants; pollution; precipitation; reduction; water treatment Groundwater quality Pollution and waste management non radioactive Groundwater acid mine drainage aquifer pollution conference proceedings containment barrier metal tailings Canada Ontario Nickel Rim Mine United States North Carolina Elizabeth City mine water treatment  
  Abstract Permeable reactive barriers are a promising new approach to the treatment of dissolved contaminants in aquifers. This technology has progressed rapidly from laboratory studies to full-scale implementation over the past decade. Laboratory treatability studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4, and SO4. Small scale field studies have indicated the potential for treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4, and SO4. Permeable reactive barriers have been used in full-scale installations for the treatment of hexavalent chromium, dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn, and dissolved nutrients, including nitrate and phosphate. A full-scale barrier designed to prevent the release of contaminants associated with inactive mine tailings impoundment was installed at the Nickel Rim mine site in Canada in August 1995. This reactive barrier removes Fe, SO,, Ni and other metals. The effluent from the barrier is neutral in pH and contains no acid-generating potential, and dissolved metal concentrations are below regulatory guidelines. A full-scale reactive barrier was installed to treat Cr(VI) and halogenated hydrocarbons at the US Coast Guard site in Elizabeth City, North Carolina, USA in June 1996. This barrier removes Cr(VI) from >8 mg l(-1) to <0.01 mg l(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0144-7815 ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of dissolved metals using permeable reactive barriers; Isip:000079718200072; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8601 Serial 178  
Permanent link to this record
 

 
Author Watzlaf, G.R.; Schroeder, K.T.; Kairies, C.L. openurl 
  Title Type Book Whole
  Year 2000 Publication Abbreviated Journal  
  Volume (down) Issue Pages 262-274  
  Keywords passive treatment anoxic limestone drains wetlands sulfate reduction successive alkalinity-producing systems acid mine drainage ALD SAPS RAPS  
  Abstract Ten passive treatment systems, located in Pennsylvania and Maryland, have been intensively monitored for up to ten years. Influent and effluent water quality data from ten anoxic limestone drains (ALDs) and six reducing and alkalinity-producing systems (RAPS) have been analyzed to determine long-term performance for each of these specific unit operations. ALDs and RAPS are used principally to generate alkalinity, ALDs are buried beds of limestone that add alkalinity through dissolution of calcite. RAPS add alkalinity through both limestone dissolution and bacterial sulfate reduction. ALDs that received mine water containing less than 1 mg/L of both ferric iron and aluminum have continued to produce consistent concentrations of alkalinity since their construction. However, an ALD that received 20 mg/L of aluminum experienced a rapid reduction in permeability and failed within five months. Maximum levels of alkalinity (between 150 and 300 m&) appear to be reached after I5 hours of retention. All but one RAPS in this study have been constructed and put into operation only within the past 2.5 to 5 years. One system has been in operation and monitored for more than nine years. AIkalinity due to sulfate reduction was highest during the first two summers of operation. Alkalinity due to a limestone dissolution has been consistent throughout the life of the system. For the six RAPS in this study, sulfate reduction contributed an average of 28% of the total alkalinity. Rate of total alkalinity generation range from 15.6 gd''rn-'to 62.4 gd-'mL2 and were dependent on influent water quality and contact time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Tampa Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings, 17th Annual National Meeting – American Society for Surface Mining and Reclamation Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Long-Term Perpormance of Alkalinity-Producing Passive Systems for the Treatment of Mine Drainage; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb., 5 Tab. Approved no  
  Call Number CBU @ c.wolke @ 17440 Serial 216  
Permanent link to this record
 

 
Author Kuyucak, N.; St-Germain, P. openurl 
  Title Possible options for in situ treatment of acid mine drainage seepages Type Book Chapter
  Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 Abbreviated Journal  
  Volume (down) Issue Pages 311-318  
  Keywords acid mine drainage; bacteria; base metals; biodegradation; bioremediation; carbonate rocks; experimental studies; in situ; limestone; metal ores; pollution; reduction; remediation; sedimentary rocks; seepage 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Possible options for in situ treatment of acid mine drainage seepages; GeoRef; English; 2007-045234; International land reclamation and mine drainage conference; International conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 12; illus. incl. 4 tables Approved no  
  Call Number CBU @ c.wolke @ 6614 Serial 321  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: