toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jage, C.R.; Zipper, C.E. openurl 
  Title (down) Acid-mine drainage treatment using successive alkalinity-producing systems Type RPT
  Year 2000 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; alkalinity; Appalachians; carbonate rocks; decontamination; dissolved materials; dissolved oxygen; limestone; North America; oxygen; pH; pollution; reclamation; sedimentary rocks; United States; Virginia; waste management; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Virginia Polytechnic Institute and State University, P.R.P.B.V.A.U.S. Series Title Powell River Project research and education program reports Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid-mine drainage treatment using successive alkalinity-producing systems; 2002-029549; GeoRef; English; References: 12; illus. incl. 2 tables U. S. Geological Survey, Library, Reston, VA, United States Approved no  
  Call Number CBU @ c.wolke @ 5882 Serial 343  
Permanent link to this record
 

 
Author Fripp, J.; Ziemkiewicz, P.F.; Charkavorki, H. openurl 
  Title (down) Acid Mine Drainage Treatment Type Journal Article
  Year 2000 Publication Ecosystem Management and Restoration Research Program Technical Notes Abbreviated Journal  
  Volume Erdc Tn-Emrrp-Sr-14 Issue Pages 7  
  Keywords AMD treatment sampling  
  Abstract Contaminated water flowing from abandoned coal mines is one of the most significant contributors to water pollution in former and current coal-producing areas. Acid mine drainage (AMD) can have severe impacts to aquatic resources, can stunt terrestrial plant growth and harm wetlands, contaminate groundwater, raise water treatment costs, and damage concrete and metal structures. In the Appalachian Mountains of the eastern United States alone, more than 7,500 miles of streams are impacted. The Pennsylvania Fish and Boat Commission estimates that the economic losses on fisheries and recreational uses are approximately $67 million annually (ref). While most modern coal-mining operations (Figure 1) must meet strict environmental regulations concerning mining techniques and treatment practices, there are thousands of abandoned mine sites in the United States (Figure 2). Treatment of a single site can result in the restoration of several miles of impacted streams. The purpose of this document is to briefly summarize key issues related to AMD treatment. This document is intended as a brief overview; thus, it is neither inclusive nor exhaustive. The technical note presents the preliminary planning issues  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid Mine Drainage Treatment; 2; als Datei vorhanden 5 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17344 Serial 374  
Permanent link to this record
 

 
Author Hazen, J.M. openurl 
  Title (down) Acid mine drainage characterization and remediation using a combination of hydrometric measurements, isotopes and dissolved solutes Type Book Whole
  Year 2000 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Acid mine drainage Metals Environmental aspects Water quality Colorado Measurement  
  Abstract  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher University of Colorado, Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage characterization and remediation using a combination of hydrometric measurements, isotopes and dissolved solutes; Opac Approved no  
  Call Number CBU @ c.wolke @ 7243 Serial 357  
Permanent link to this record
 

 
Author Dillard, G. openurl 
  Title (down) A win-win way to clean up by changing ionic state, new process can precipitate heavy metals Type Journal Article
  Year 2000 Publication Pay Dirt Abbreviated Journal  
  Volume 734 Issue Pages 10-11  
  Keywords acid mine drainage; California; chemical composition; companies; environmental analysis; environmental management; heavy metals; ion exchange; ions; metal ores; metals; mining; pollutants; pollution; precipitation; processes; remediation; soils; surface water; United States; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes A win-win way to clean up by changing ionic state, new process can precipitate heavy metals; 2004-029026; illus. United States (USA); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5822 Serial 401  
Permanent link to this record
 

 
Author Tempel, R.N. url  openurl
  Title (down) A quantitative approach to optimize chemical treatment of acid drainage using geochemical reaction path modeling methods: Climax Mine, Colorado Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1053-1058  
  Keywords mine water treatment  
  Abstract The Climax Mine, near Leadville, Colorado treats acid drainage in a lime neutralization chemical treatment system. Chemical treatment has been successful in reducing the concentration of metals to below surface water discharge effluent limits, but lime usage has not been optimized. A geochemical modeling approach has been developed to increase the efficiency of lime neutralization. The modeling approach incorporates two steps: (1)calibration, and (2) calculation of amount of lime needed to increase pH and remove metals. Results of our work quantify the lime treatment process and improve our ability to predict overall water quality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes A quantitative approach to optimize chemical treatment of acid drainage using geochemical reaction path modeling methods: Climax Mine, Colorado; Isip:000169875500102; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17102 Serial 168  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: