toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ahmed, S.M. openurl 
  Title (down) Surface chemical methods of forming hardpan in pyrrhotite tailings and prevention of the acid mine drainage Type Journal Article
  Year 1994 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; chemical composition; experimental studies; mines; oxidation; pollution; pyrite; pyrrhotite; remediation; sulfides; tailings; waste disposal; weathering rinds 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Special Publication - United States. Bureau of Mines, Report: BUMINES-SP-06B-94 Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 2007-045205; International land reclamation and mine drainage conference; International conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 4; illus. incl. 1 table; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6593 Serial 488  
Permanent link to this record
 

 
Author Bowell, R.J. openurl 
  Title (down) Sulphate and salt minerals; the problem of treating mine waste Type Journal Article
  Year 2000 Publication Mining Environmental Management Abbreviated Journal  
  Volume 8 Issue 3 Pages 11-13  
  Keywords acid mine drainage; acidification; decontamination; discharge; dissolved materials; ecology; effluents; geomembranes; lime; mines; pollution; precipitation; protection; recycling; reverse osmosis; soils; surface water; suspended materials; toxic materials; waste disposal; waste management 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-4218 ISBN Medium  
  Area Expedition Conference  
  Notes Sulphate and salt minerals; the problem of treating mine waste; 2000-062783; illus. incl. 4 tables United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5834 Serial 440  
Permanent link to this record
 

 
Author Zou, L.H. url  openurl
  Title (down) Sulfide precipitation flotation for treatment of acidic mine waste water Type Journal Article
  Year 2000 Publication Transactions of Nonferrous Metals Society of China Abbreviated Journal  
  Volume 10 Issue Pages 106-109  
  Keywords mine water treatment  
  Abstract Sulfide precipitation flotation of copper-iron-bearing acidic waste water from a large copper mine and the stimulated waste water were studied. The pH of the waste water was 2.2, with 130 mg/L Cu2+ and 500 mg/L Fe3+ (Fe2+). Results show that, when Na2S was added as precipitating agent, sodium butylxanthate as collector and at pH 2.0, the removal of copper could be as high as 99.7 % and the residual copper decreased to 0.2 mg/L, however, almost no iron was removed. When the floated solution was neutralized to pH = 8.0, more than 98 % iron was precipitated and the residual iron was less than 10 mg/L. In experiment on actual mine effluents, after the use of precipitate flotation technology to recover copper and pH neutralization to precipitate iron, the treated waste water does meet the emission standards for sewage and valuable floating copper graded 37.12%. The chemical calculation and mechanism of solution were also presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Sulfide precipitation flotation for treatment of acidic mine waste water; Wos:000088249500025; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17086 Serial 128  
Permanent link to this record
 

 
Author Eger, P. url  openurl
  Title (down) Sulfate reduction for the treatment of acid mine drainage; Long term solution or short term fix? Type Journal Article
  Year 1995 Publication Sudbury '95 – Mining and the Environment, Conference Proceedings, Vols 1-3 Abbreviated Journal  
  Volume Issue Pages 515-524  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Sulfate reduction for the treatment of acid mine drainage; Long term solution or short term fix?; Isip:A1995bg39j00052; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8887 Serial 139  
Permanent link to this record
 

 
Author Kepler, D.A.; Mc Cleary, E.C. url  openurl
  Title (down) Successive Alkalinity-Producing Systems (SAPS) for the Treatment of Acid Mine Drainage Type Journal Article
  Year 1994 Publication Proceedings, International Land Reclamation and Mine Drainage Conference Abbreviated Journal  
  Volume 1 Issue Pages 195-204  
  Keywords acid mine drainage; alkalinity; anaerobic environment; calcium carbonate; chemical reactions; experimental studies; pH; pollutants; pollution; remediation; water quality SAPS mine water RAPS  
  Abstract Constructed wetland treatment system effectiveness has been limited by the alkalinity-producing, or acidity-neutralizing, capabilities of systems. Anoxic limestone drains (ALD's) have allowed for the treatment of approximately 300 mg/L net acidic mine drainage, but current design guidance precludes using successive ALD's to generate alkalinity in excess of 300 mg/L because of concerns with dissolved oxygen. “Compost” wetlands designed to promote bacterially mediated sulfate reduction are suggested as a means of generating alkalinity required in excess of that produced by ALD's. Compost wetlands create two basic needs of sulfate reducing bacteria; anoxic conditions resulting from the inherent oxygen demand of the organic substrate, and quasi-circumneutral pH values resulting from the dissolution of the carbonate fraction of the compost. However, sulfate reduction treatment area needs are generally in excess of area availability and/or cost effectiveness. Second generation alkalinity-producing systems demonstrate that a combination of existing treatment mechanisms has the potential to overcome current design concerns and effectively treat acidic waters ad infinitum. Successive alkalinity-producing systems (SAPS) combine ALD technology with sulfate reduction mechanisms. SAPS promote vertical flow through rich organic wetland substrates into limestone beds beneath the organic compost, discharging the pore waters. SAPS allow for conservative wetland treatment sizing calculations to be made as a rate function based on pH and alkalinity values and associated contaminant loadings. SAPS potentially decrease treatment area requirements and have the further potential to generate alkalinity in excess of acidity regardless od acidity concentrations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Successive Alkalinity-Producing Systems (SAPS) for the Treatment of Acid Mine Drainage; Cn, Kj, Aj; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9722.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9722 Serial 55  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: