toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Govind, R. url  openurl
  Title (up) Treatment of acid mine drainage using membrane bioreactors Type Journal Article
  Year 2001 Publication Bioremediation of Inorganic Compounds Abbreviated Journal  
  Volume 6 Issue 9 Pages 1-8  
  Keywords mine water treatment  
  Abstract Acid mine drainage is a severe water pollution problem attributed to past mining activities. The exposure of the post-mining mineral residuals to water and air results in a series of chemical and biological oxidation reactions, that produce an effluent which is highly acidic and contains high concentrations of various metal sulfates. Several treatment techniques utilizing sulfate reducing bacteria have been proposed in the past; however few of them have been practically applied to treat acid mine drainage. This research deals with membrane reactor studies to treat the acid mine drainage water from Berkeley Pit in Butte, Montana using hydrogen-consuming sulfate reducing bacteria. Eventually, the membrane reactor system can be applied towards the treatment of acid mine drainage to produce usable water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of acid mine drainage using membrane bioreactors; Isip:000175098600001; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17051 Serial 162  
Permanent link to this record
 

 
Author Karl, D.J.; Rolsten, R.F.; Carmody, G.A.; Karl, M.E. url  openurl
  Title (up) Treatment of Acid-mine Drainage Water with Alkaline By-products and Lime Blends Type Journal Article
  Year 1983 Publication Ohio J. Sci. Abbreviated Journal  
  Volume 83 Issue 2 Pages 36  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0030-0950 ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of Acid-mine Drainage Water with Alkaline By-products and Lime Blends; Isi:A1983qk50900121; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9720 Serial 94  
Permanent link to this record
 

 
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Puls, R.W. url  openurl
  Title (up) Treatment of dissolved metals using permeable reactive barriers Type Journal Article
  Year 1998 Publication Groundwater Quality: Remediation and Protection Abbreviated Journal  
  Volume Issue 250 Pages 483-490  
  Keywords adsorption; aquifers; attenuation; dissolved materials; metals; nutrients; oxidation; pollutants; pollution; precipitation; reduction; water treatment Groundwater quality Pollution and waste management non radioactive Groundwater acid mine drainage aquifer pollution conference proceedings containment barrier metal tailings Canada Ontario Nickel Rim Mine United States North Carolina Elizabeth City mine water treatment  
  Abstract Permeable reactive barriers are a promising new approach to the treatment of dissolved contaminants in aquifers. This technology has progressed rapidly from laboratory studies to full-scale implementation over the past decade. Laboratory treatability studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4, and SO4. Small scale field studies have indicated the potential for treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4, and SO4. Permeable reactive barriers have been used in full-scale installations for the treatment of hexavalent chromium, dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn, and dissolved nutrients, including nitrate and phosphate. A full-scale barrier designed to prevent the release of contaminants associated with inactive mine tailings impoundment was installed at the Nickel Rim mine site in Canada in August 1995. This reactive barrier removes Fe, SO,, Ni and other metals. The effluent from the barrier is neutral in pH and contains no acid-generating potential, and dissolved metal concentrations are below regulatory guidelines. A full-scale reactive barrier was installed to treat Cr(VI) and halogenated hydrocarbons at the US Coast Guard site in Elizabeth City, North Carolina, USA in June 1996. This barrier removes Cr(VI) from >8 mg l(-1) to <0.01 mg l(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0144-7815 ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of dissolved metals using permeable reactive barriers; Isip:000079718200072; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8601 Serial 178  
Permanent link to this record
 

 
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Bennett, T.A.; Puls, R.W. url  openurl
  Title (up) Treatment of inorganic contaminants using permeable reactive barriers Type Journal Article
  Year 2000 Publication J Contam Hydrol Abbreviated Journal  
  Volume 45 Issue 1-2 Pages 123-137  
  Keywords acid mine drainage; adsorption; agricultural waste; aquifers; chemical reactions; chromium; concentration; contaminant plumes; decontamination; disposal barriers; dissolved materials; drainage; ground water; heavy metals; metals; nitrate ion; nutrients; permeability; phosphate ion; pollution; pump-and-treat; remediation; sulfate ion; waste disposal; water treatment mine water treatment Remediation Groundwater Metals Nutrients Radionuclides  
  Abstract Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4 and SO4. Small-scale field studies have demonstrated treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4 and SO4. Permeable reactive barriers composed of zero-valent iron have been used in full-scale installations for the treatment of Cr, U, and Tc. Solid-phase organic carbon in the form of municipal compost has been used to remove dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn. Dissolved nutrients, including NO3 and PO4, have been removed from domestic septic-system effluent and agricultural drainage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-7722 ISBN Medium  
  Area Expedition Conference  
  Notes Sept.; Treatment of inorganic contaminants using permeable reactive barriers; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9401.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 9401 Serial 46  
Permanent link to this record
 

 
Author Kleinmann, R.L.P. url  openurl
  Title (up) Treatment of mine drainage by anoxic limestone drains and constructed wetlands Type Journal Article
  Year 1998 Publication Acidic Mining Lakes Abbreviated Journal  
  Volume Issue Pages 303-319  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of mine drainage by anoxic limestone drains and constructed wetlands; Isip:000078867600016; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8621 Serial 179  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: