toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Scharp, R.A.; Kawahara, F.; Burckle, J.; Allan, J.; Govind, R. openurl 
  Title Recovery of metals from acid mine drainage Hardrock mining 2002; issues shaping the industry Type Book Chapter
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; bacteria; Berkeley Pit; Butte Montana; cost; decontamination; metals; mining; Montana; pH; pollution; recovery; remediation; Silver Bow County Montana; smelting; sulfates; United States 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis (down)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recovery of metals from acid mine drainage Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046147; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no  
  Call Number CBU @ c.wolke @ 5614 Serial 251  
Permanent link to this record
 

 
Author Nuttall, C.A. openurl 
  Title Mine Water Treatment Type Journal Article
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis (down)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-09-5438-270-4 ISBN Medium  
  Area Expedition Conference  
  Notes Mine Water Treatment; University of Newcastle-upon-Tyne [England]: Hydrogeochemical Engineering Research and Outreach; Opac Approved no  
  Call Number CBU @ c.wolke @ 7188 Serial 280  
Permanent link to this record
 

 
Author Kingham, N.W.; Semenak, R.; Powell, G.; Way, S. openurl 
  Title Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry Type Book Chapter
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; Basin-Luttrell Pit; cost; environmental effects; leachate; Lewis and Clark County Montana; metals; Montana; osmosis; pollutants; pollution; precipitation; reverse osmosis; soils; sulfates; tailings; Ten Mile Creek; United States; waste rock; waste water; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis (down)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046128; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no  
  Call Number CBU @ c.wolke @ 5610 Serial 331  
Permanent link to this record
 

 
Author Johnson, D.B.; Hallberg, K.B. openurl 
  Title Pitfalls of passive mine water treatment Type Journal Article
  Year 2002 Publication Reviews in Environmental Science & Biotechnology Abbreviated Journal  
  Volume 1 Issue 5 Pages 335-343  
  Keywords acid mine drainage acidophilic microorganisms heavy metals iron oxidation iron reduction remediation sulfate reduction wetlands Wheal Jane  
  Abstract Passive (wetland) treatment of waters draining abandoned and derelict mine sites has a number of detrac-tions. Detailed knowledge of many of the fundamental processes that dictate the performance and longevity of constructed systems is currently very limited and therefore more research effort is needed before passive treatment becomes an “off-the-shelf” technology.  
  Address  
  Corporate Author Thesis (down)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-1705 ISBN Medium  
  Area Expedition Conference  
  Notes Dec.; Pitfalls of passive mine water treatment; 2; FG als Datei vorhanden 4 Abb., 1 Tab.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 10138 Serial 336  
Permanent link to this record
 

 
Author Gusek, J.J. openurl 
  Title Type Book Whole
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages 1-14 [Cd-Rom]  
  Keywords Constructed wetlands acid mine drainage heavy metals sulfate reduction  
  Abstract There are basically two kinds of biological passive treatment cells for treating mine drainage. Aerobic Cells, containing cattails and other plants, are typically applicable to coal mine drainage where iron and manganese and mild acidity are problematic. Anaerobic Cells or Sulfate-Reducing Bioreactors are typically applicable to metal mine drainage with high acidity and a wide range of metals. Most passive treatment systems employ one or both of these cell types. The track record of aerobic cells in treating coal mine drainage is impressive, especially in the eastern coalfields. Sulfate-reducing bioreactors have tremendous potential at metal mines and coal mines, but have not seen as wide an application. This paper presents the advantages of sulfate-reducing bioreactors in treating mine drainage, including: the ability to work in cold, high altitude environments, handle high flow rates of mildly affected ARD in moderate acreage footprints, treat low pH acid drainage with a wide range of metals and anions including uranium, selenium, and sulfate, accept acid drainagecontaining dissolved aluminum without clogging with hydroxide sludge, have life-cycle costs on the order of $0.50 per thousand gallons, and be integrated into “semi-passive” systems that might be powered by liquid organic wastes. Sulfate reducing bioreactors might not be applicable in every abandoned mine situation. However a phased design program of laboratory, bench, and pilot scale testing has been shown to increase the likelihood of a successful design.  
  Address  
  Corporate Author Thesis (down)  
  Publisher Place of Publication Park City Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings, Annual Conference – National Association of Abandoned Mine Land Programs Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Sulfate-Reducing Bioreactor Design and Operating Issues – Is this the Passive Treatment Technology for your Mine Drainage?; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb. Approved no  
  Call Number CBU @ c.wolke @ 17348 Serial 364  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: