toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ziemkiewicz, P.F.; Skousen, J.G.; Brant, D.L.; Sterner, P.L.; Lovett, R.J.; Skousen, J.G.; Ziemkiewicz, P.F. openurl 
  Title Acid mine drainage treatment with armored limestone in open limestone channels Type Book Chapter
  Year 1996 Publication Acid mine drainage control and treatment Abbreviated Journal  
  Volume Issue Pages  
  Keywords abandoned mines; acid mine drainage; acidification; carbonate rocks; case studies; chemical reactions; coal mines; controls; decontamination; effluents; environmental management; experimental studies; ground water; heavy metals; hydrology; limestone; mines; Pennsylvania; pollution; reclamation; sedimentary rocks; soils; surface water; United States; water treatment; watersheds; West Virginia 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage treatment with armored limestone in open limestone channels; GeoRef; English; 2004-051155; Edition: 2 References: 14; illus. incl. 6 tables Approved no  
  Call Number CBU @ c.wolke @ 6365 Serial 189  
Permanent link to this record
 

 
Author Zamzow, M.J.; Schultze, L.E. openurl 
  Title Treatment of acid mine drainage using natural zeolites Type Journal Article
  Year 1993 Publication International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites Abbreviated Journal  
  Volume 1993 Issue Pages 220-221  
  Keywords abandoned mines; acid mine drainage; clinoptilolite; experimental studies; feasibility studies; framework silicates; hydrochemistry; mines; Nevada; northeastern Nevada; phillipsite; remediation; Rio Tinto Deposit; silicates; surface water; United States; zeolite group abandoned mines acid mine drainage clinoptilolite experimental studies feasibility studies framework silicates hydrochemistry mines Nevada northeastern Nevada phillipsite remediation Rio Tinto Deposit silicates surface water United States zeolite group  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of acid mine drainage using natural zeolites; GeoRef: 95-04036 1 table; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9998 Serial 192  
Permanent link to this record
 

 
Author Niyogi, D.K.; McKnight, D.M.; Lewis, W.M., Jr.; Kimball, B.A. openurl 
  Title Experimental diversion of acid mine drainage and the effects on a headwater stream Type Journal Article
  Year 1999 Publication Water-Resources Investigations Report Abbreviated Journal  
  Volume Wri 99-4018-A Issue Pages 123-130  
  Keywords abandoned mines acid mine drainage algae benthonic taxa biomass biota Colorado experimental studies heavy metals Lake County Colorado Leadville Colorado metals mines pH Plantae pollution remediation Saint Kevin Gulch Colorado tracers United States USGS water zinc  
  Abstract An experimental diversion of acid mine drainage was set up near an abandoned mine in Saint Kevin Gulch, Colorado. A mass-balance approach using natural tracers was used to estimate flows into Saint Kevin Gulch. The diversion system collected about 85 percent of the mine water during its first year of operation (1994). In the first 2 months after the diversion, benthic algae in an experimental reach (stream reach around which mine drainage was diverted) became more abundant as water quality improved (increase in pH, decrease in zinc concentrations) and substrate quality changed (decrease in rate of metal hydroxide deposition). Further increases in pH to levels above 4.6, however, led to lower algal biomass in subsequent years (1995-97). An increase in deposition of aluminum precipitates at pH greater than 4.6 may account for the suppression of algal biomass. The pH in the experimental reach was lower in 1998 and algal biomass increased. Mine drainage presents a complex, interactive set of stresses on stream ecosystems. These interactions need to be considered in remediation goals and plans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0092-332x ISBN Medium  
  Area Expedition Conference  
  Notes Experimental diversion of acid mine drainage and the effects on a headwater stream; 2; GeoRef: 2001-017199 als Datei vorhanden 4 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17398 Serial 286  
Permanent link to this record
 

 
Author Nairn, R.W.; Griffin, B.C.; Strong, J.D.; Hatley, E.L. openurl 
  Title Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma Type Book Chapter
  Year 2001 Publication Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.18 Abbreviated Journal  
  Volume Issue Pages 579-584  
  Keywords abandoned mines acid mine drainage collapse structures constructed wetlands environmental analysis geologic hazards ground water human ecology Kansas land subsidence lead metals mines Missouri Oklahoma pollution reclamation remediation springs Superfund sites surface water Tar Creek Superfund Site United States water resources wetlands zinc 22, Environmental geology  
  Abstract The Tar Creek Superfund Site is a portion of the abandoned lead and zinc mining area known as the Tri-State Mining District (OK, KS and MO) and includes over 100 square kilometers of disturbed land surface and contaminated water resources in extreme northeastern Oklahoma. Underground mining from the 1890s through the 1960s degraded over 1000 surface hectares, and left nearly 50 km of tunnels, 165 million tons of processed mine waste materials (chat), 300 hectares of tailings impoundments and over 2600 open shafts and boreholes. Approximately 94 million cubic meters of contaminated water currently exist in underground voids. In 1979, metal-rich waters began to discharge into surface waters from natural springs, bore holes and mine shafts. Six communities are located within the boundaries of the Superfund site. Approximately 70% of the site is Native American owned. Subsidence and surface collapse hazards are of significant concern. The Tar Creek site was listed on the National Priorities List (NPL) in 1983 and currently receives a Hazard Ranking System score of 58.15, making Tar Creek the nation's number one NPL site. A 1993 Indian Health Service study demonstrated that 35% of children had blood lead levels above thresholds dangerous to human health. Recent remediation efforts have focused on excavation and replacement of contaminated residential areas. In January 2000, Governor Frank Keating's Tar Creek Task Force was created to take a “vital leadership role in identifying solutions and resources available to address” the myriad environmental problems. The principle final recommendation was the creation of a massive wetland and wildlife refuge to ecologically address health, safety, environmental, and aesthetic concerns. Additional interim measures included continuing the Task Force and subcommittees; study of mine drainage discharge and chat quality; construction of pilot treatment wetlands; mine shaft plugging; investigations of bioaccumulation issues; establishment of an authority to market and export chat, a local steering committee, and a GIS committee; and development of effective federal, state, tribal, and local partnerships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Vincent, R.; Burger, J.A.; Marino, G.G.; Olyphant, G.A.; Wessman, S.C.; Darmody, R.G.; Richmond, T.C.; Bengson, S.A.; Nawrot, J.R.  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma; GeoRef; English; 2002-036287; 18th annual national meeting of the American Society for Surface Mining and Reclamation; Land reclamation, a different approach, Albuquerque, NM, United States, June 3-7, 2001 References: 20; illus. incl. 1 table Approved no  
  Call Number CBU @ c.wolke @ 16526 Serial 290  
Permanent link to this record
 

 
Author Magdziorz, A.; Sewerynski, J. isbn  openurl
  Title The use of membrane technique in mineralised water treatment for drinking and domestic purposes at “Pokoj” coal mine district under liquidation Type Book Chapter
  Year 2000 Publication 7th international Mine Water Association congress; Mine water and the environment Abbreviated Journal  
  Volume Issue Pages 430-442  
  Keywords abandoned mines; Central Europe; coal mines; drinking water; environmental analysis; Europe; ground water; Katowice Poland; mine drainage; mines; Pokoj mining district; Poland; remediation; Upper Silesian coal basin; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Uniwersytet Slaski Place of Publication Sosnowiec Editor Rozkowski, A.  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 8387431230 Medium  
  Area Expedition Conference  
  Notes The use of membrane technique in mineralised water treatment for drinking and domestic purposes at “Pokoj” coal mine district under liquidation; GeoRef; English; 2002-018165; 7th international Mine Water Association congress; Mine water and the environment, Katowice-Ustron, Poland, Sept. 11-15, 2000 References: 4; illus. incl. 4 tables Approved no  
  Call Number CBU @ c.wolke @ 5849 Serial 311  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: