toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Eger, P.; Wagner, J.R.; Kassa, J.R.; Melchert, G.D. openurl 
  Title Metal removal in wetland treatment systems Type Book Chapter
  Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 Abbreviated Journal  
  Volume Issue Pages 80-88  
  Keywords acid mine drainage; cobalt; constructed wetlands; copper; flows; geochemistry; hydrology; metals; mines; Minnesota; nickel; peat; pollution; remediation; sediments; sulfides; surface water; United States; waste disposal; water quality; wetlands; zinc 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine Drainage Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Metal removal in wetland treatment systems; GeoRef; English; 2007-045160; International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 21; illus. incl. 2 tables Approved no  
  Call Number CBU @ c.wolke @ 6570 Serial 391  
Permanent link to this record
 

 
Author Eger, P.; Melchert, G.; Antonson, D.; Wagner, J. openurl 
  Title Magnesium hydroxide as a treatment for acid mine drainage in northern Minnesota Type Book Chapter
  Year 1993 Publication Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.10 Abbreviated Journal  
  Volume Issue Pages 204-217  
  Keywords acid mine drainage acidification alkaline earth metals chemical properties cobalt copper drainage experimental studies hydroxides laboratory studies lime magnesium magnesium hydroxide metals Minnesota nickel northern Minnesota oxides pH pollution porous materials reagents remediation residence time trace metals United States waste disposal zinc 22, Environmental geology  
  Abstract Three alkaline materials were investigated for their suitability to treat acid mine drainage generated by a research facility located at a remote site in northern Minnesota. The materials investigated were hydrated lime, sodium hydroxide, and magnesium hydroxide. All three reagents were successful at raising pH and removing trace metals from the drainage, but the magnesium hydroxide had the added benefit of producing a maximum pH of approximately 9.5, while the other two reagents resulted in pH values of 12 and greater. In addition, the magnesium hydroxide was available as a high solid content slurry (58%) which simplified application and handling, and which produced the lowest volume of sludge of the materials tested.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor Zamora, B.A.; Connolly, R.E.  
  Language Summary Language Original Title  
  Series Editor Series Title The challenge of integrating diverse perspectives in reclamation Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Magnesium hydroxide as a treatment for acid mine drainage in northern Minnesota; GeoRef; English; 2002-028930; 10th annual national meeting of the American Society for Surface Mining and Reclamation, Spokane, WA, United States, May 16, 1993 References: 7; illus. incl. 4 tables Approved no  
  Call Number CBU @ c.wolke @ 16743 Serial 393  
Permanent link to this record
 

 
Author Dillard, G. openurl 
  Title A win-win way to clean up by changing ionic state, new process can precipitate heavy metals Type Journal Article
  Year 2000 Publication Pay Dirt Abbreviated Journal  
  Volume 734 Issue Pages 10-11  
  Keywords acid mine drainage; California; chemical composition; companies; environmental analysis; environmental management; heavy metals; ion exchange; ions; metal ores; metals; mining; pollutants; pollution; precipitation; processes; remediation; soils; surface water; United States; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes A win-win way to clean up by changing ionic state, new process can precipitate heavy metals; 2004-029026; illus. United States (USA); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5822 Serial 401  
Permanent link to this record
 

 
Author Curi, A.C.; Granda, W.J.V.; Lima, H.M.; Sousa, W.T. openurl 
  Title Zeolites and their application in the decontamination of mine waste water Type Journal Article
  Year 2006 Publication Informacion Tecnologica Abbreviated Journal  
  Volume 17 Issue 6 Pages 111-118  
  Keywords adsorption decontamination effluents industrial waste ion exchange metallurgical industries metallurgy mining mining industry porosity wastewater treatment zeolites zeolites decontamination mine waste water genesis porosity adsorption ionic exchange mineral metallurgical effluents mercury pollution artisan mining activities heavy metals removal metal mining effluents mercury vapors ovens fire amalgams Manufacturing and Production  
  Abstract This paper describes the genesis, structure and classification of natural zeolites, including their most relevant properties such as porosity, adsorption and ionic exchange. The use of natural zeolites in the treatment of effluents containing heavy metals is reviewed based on current literature. These uses are focused on mineral-metallurgical effluents and mercury pollution related to artisan mining activities. The study shows that natural zeolites are efficient in removal of heavy metals in metal mining effluents, can be produced and improved at a low cost, and can also be used to adsorb mercury vapors from ovens used to fire amalgams.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0716-8756 ISBN Medium  
  Area Expedition Conference  
  Notes Zeolites and their application in the decontamination of mine waste water; 9532002; Journal Paper; SilverPlatter; Ovid Technologies Approved no  
  Call Number CBU @ c.wolke @ 16784 Serial 409  
Permanent link to this record
 

 
Author Calabrese, J.P.; Sexstone, A.J.; Bhumbla, D.K.; Skousen, J.G.; Bissonnette, G.K.; Sencindiver, J.C. openurl 
  Title Long-term study of constructed model wetlands for treatment of acid mine drainage Type Book Chapter
  Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 Abbreviated Journal  
  Volume Issue Pages 406  
  Keywords acid mine drainage; alkalinity; biodegradation; field studies; iron; metals; models; monitoring; pH; pollution; reduction; remediation; sulfates; surface water; water quality; wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Long-term study of constructed model wetlands for treatment of acid mine drainage; GeoRef; English; 2007-045256; International land reclamation and mine drainage conference; International conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 Approved no  
  Call Number CBU @ c.wolke @ 6631 Serial 426  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: