toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Konieczny, K. url  openurl
  Title Mining waters treatment for drinking and economic aims Type Journal Article
  Year 2003 Publication VI National Polish Scientific Conference on Complex and Detailed Problems of Environmental Engineering Abbreviated Journal  
  Volume 21 Issue Pages 333-348  
  Keywords mine water treatment  
  Abstract Poland is comparatively a poor country in relation to resources of drinking water. In count per capita it is oil one of the last places in Europe. Such state forces to save resources for example by closing water circulations and also desalination of mining waters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Mining waters treatment for drinking and economic aims; Isip:000245280000020; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 7958 Serial 149  
Permanent link to this record
 

 
Author Kuyucak, N. url  openurl
  Title Mining, the Environment and the Treatment of Mine Effluents Type Journal Article
  Year 1998 Publication Int. J. Environ. Pollut. Abbreviated Journal  
  Volume 10 Issue 2 Pages 315-325  
  Keywords mine water treatment acid mine drainage high density sludge lime neutralization mining environment passive treatment sulfate-reducing bacteria  
  Abstract The environmental impact of mining on the ecosystem, including land, water and air, has become an unavoidable reality. Guidelines and regulations have been promulgated to protect the environment throughout mining activities from start-up to site decommissioning. In particular, the occurrence of acid mine drainage (AMD), due to oxidation of sulfide mineral wastes, has become the major area of concern to many mining industries during operations and after site decommissioning. AMD is characterized by high acidity and a high concentration of sulfates and dissolved metals. If it cannot be prevented or controlled, it must be treated to eliminate acidity, and reduce heavy metals and suspended solids before release to the environment. This paper discusses conventional and new methods used for the treatment of mine effluents, in particular the treatment of AMD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4352 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Mining, the Environment and the Treatment of Mine Effluents; Isi:000078420600009; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17477 Serial 56  
Permanent link to this record
 

 
Author Campbell, A. url  openurl
  Title Mitigation of acid rock drainage at the Summitville Mine Superfund Site, Colorado, USA Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1243-1250  
  Keywords mine water treatment  
  Abstract Numerous techniques for treating, controlling, and preventing acid rock drainage have been applied at the Summitville Mine Superfund Site. Challenging aspects of the remote mine site include the wide-spread occurrence of acid-generating soils and rocks, extensive surface and underground mine workings, and a cold and wet climate. Water treatment was an immediate necessity when the Government took control of the abandoned site in December of 1992. Subsequent reclamation activities have emphasized prevention and control of ARD to minimize future water treatment requirements. A combination of conventional, innovative, and experimental methods are being applied to successfully mitigate ARD at Summitville.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Mitigation of acid rock drainage at the Summitville Mine Superfund Site, Colorado, USA; Isip:000169875500124; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17110 Serial 165  
Permanent link to this record
 

 
Author Kothe, E. url  openurl
  Title Molecular mechanisms in bio-geo-interaactions: From a case study to general mechanisms Type Journal Article
  Year 2005 Publication Chemie Der Erde-Geochemistry Abbreviated Journal  
  Volume 65 Issue Pages 7-27  
  Keywords mine water treatment  
  Abstract The understanding of molecular mechanisms in the cycling of elements in general is essential to our alteration of current processes. One field where such geochemical element cycles are of major importance is the prevention and treatment of acid mine drainage waters (AMD) which are prone to occur in every anthropogenic, modified landscape where sulfidic rock material has been brought to the surface during mine operations. Microbiologically controlled production of AMD leads not only to acidification, but at the same time the dissolution of heavy metals makes them bioavailable posing a potential ecotoxicological risk. The water path then can contaminate surface and ground water resources which leads to even bigger problems in large catchment areas. The investigation of mechanisms in natural attenuation has already provided first ideas for applications of naturally occurring bioremediation schemes. Especially an improved soil microflora can enhance the natural attenuation when adapted microbes are applied to contaminated areas. Future schemes for plant extraction, control of water efflux by increasing evapotranspiration, and by subsequent land use with agricultural plants with biostabilization and phytosequestration potential will provide putative control measures. The mechanisms in parts of these processes have been evaluated and the resulting synthesis applied to derive a bioremediation plan using the former uranium mine in Eastern Thuringia as a case study. (c) 2005 Elsevier GrnbH. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Molecular mechanisms in bio-geo-interaactions: From a case study to general mechanisms; Wos:000233975000002; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16965 Serial 114  
Permanent link to this record
 

 
Author Aube, B.C. url  openurl
  Title Molybdenum treatment at Brenda Mines Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1113-1119  
  Keywords mine water treatment  
  Abstract Brenda Mines, located 22 km Northwest of Peachland in British Columbia, Canada was an open pit copper-molybdenum mine which closed in 1990 after 20 years of operation. The primary concern in Brenda's tailings and waste rock drainage is molybdenum at a concentration of approximately 3 mg/L.. The mine drainage is alkaline and contains little or none of the typically problematic heavy metals. Given that the waters downstream are used for municipal water supply and some irrigation, a discharge limit of 0.25 mg/L molybdenum was imposed with specific water quality guidelines in the receiving creek. A. review of all existing and potential molybdenum removal methods was undertaken prior to mine closure. The chosen process is a two-step iron co-precipitation with clarification and sand filtration at a slightly acidic pH. A 4,000 usgpm (912 m(3)/h) treatment plant was constructed and commissioned in 1998, at a cost of $10.5M. The successful removal of molybdenum from the drainage water is explained with details on some design innovations and operational challenges encountered during plant start-up. Investigated sludge disposal options are discussed although the long term disposal scenario has not yet been finalised.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Molybdenum treatment at Brenda Mines; Isip:000169875500109; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17104 Serial 167  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: