toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Coulton, R.; Bullen, C.; Hallett, C. url  openurl
  Title The design and optimisation of active mine water treatment plants Type Journal Article
  Year 2003 Publication Land Contam. Reclam. Abbreviated Journal  
  Volume 11 Issue 2 Pages 273-280  
  Keywords sludge mine water treatment mine water active treatment precipitation iron manganese high density sludge sulphide Groundwater problems and environmental effects Pollution and waste management non radioactive manganese sulfide pollutant removal iron water treatment mine drainage  
  Abstract This paper provides a 'state of the art' overview of active mine water treatment. The paper discusses the process and reagent selection options commonly available to the designer of an active mine water treatment plant. Comparisons are made between each of these options, based on technical and financial criteria. The various different treatment technologies available are reviewed and comparisons made between conventional precipitation (using hydroxides, sulphides and carbonates), high density sludge processes and super-saturation precipitation. The selection of reagents (quick lime, slaked lime, sodium hydroxide, sodium carbonate, magnesium hydroxide, and proprietary chemicals) is considered and a comparison made on the basis of reagent cost, ease of use, final effluent quality and sludge settling criteria. The choice of oxidising agent (air, pure oxygen, peroxide, etc.) for conversion of ferrous to ferric iron is also considered. Whole life costs comparisons (capital, operational and decommissioning) are made between conventional hydroxide precipitation and the high density sludge process, based on the actual treatment requirements for four different mine waters.  
  Address R. Coulton, Unipure Europe Ltd., Wonastow Road, Monmouth NP25 5JA, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0513 ISBN Medium  
  Area Expedition Conference  
  Notes (up) The design and optimisation of active mine water treatment plants; 2530436; United-Kingdom 4; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17513 Serial 59  
Permanent link to this record
 

 
Author Landers, J. openurl 
  Title Bioremediation method could cut cost of treating acid rock drainage Type Journal Article
  Year 2006 Publication Civil Engineering Abbreviated Journal  
  Volume 76 Issue 7 Pages 30-31  
  Keywords Pollution and waste management non radioactive geological abstracts: environmental geology (72 14 2) bioremediation cost benefit analysis water treatment acid mine drainage pollutant removal lake water heavy metal Lawrence County South Dakota South Dakota United States North America  
  Abstract The Gilt Edge Mine in South Dakota's Lawrence County was a gold mine that was abandoned later when its recent owner went bankrupt. Seeking a cost-effective method for treating millions of gallons of acid rock drainage (ARD), CDM partnered with Green World Science, Inc. (GWS) of Boise, Idaho, for the development of an in situ bioremediation process that can be used to remove metals from pit lake water. Recent testing revealed that the in situ bioremediation method can successfully remove metals from highly acidic water without the need to construct costly water treatment facilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-7024 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Trade-; Bioremediation method could cut cost of treating acid rock drainage; 2896866; United-States; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17490 Serial 318  
Permanent link to this record
 

 
Author openurl 
  Title World first: Full-scale BioSure plant commissioned Type Journal Article
  Year 2006 Publication Water Wheel Abbreviated Journal  
  Volume 5 Issue 3 Pages 19-21  
  Keywords Waste Management and Pollution Policy geographical abstracts: human geography environmental planning (70 11 5) wastewater waste facility mine waste gold mine sewage treatment  
  Abstract ERWAT's Ancor Wastewater Treatment Works on the Far East Rand commissioned a 10 Ml/day full-scale plant to treat toxic mine-water from the Grootvlei gold mine using primary sewage sludge. The R15-million plant is treating sulphate rich acid mine drainage using the Rhodes BioSURE Process. First, the pumped mine-water is treated at a high-density separation (HDS) plant to remove iron and condition pH levels. Then it is pumped two km via a newly-constructed 10 Ml capacity pipeline to the Ancor works. This mine-water is then mixed together with primary sewage sludge in a mixing tank from where a splitter box directs the material to eight biological sulphate reducing reactors or bioreactors. The overflow water which is rich in sulphide is pumped through the main pump station to another mixing box. Here, iron slurry is mixed with the material before it is again divided between four reactor clarifiers for sulphide removal. The overflow water, now containing reduced sulphate levels and virtually no sulphide is pumped to Ancor's biofilters for removal of remaining Chemical Oxygen Demand (COD) and ammonia following the conventional sewage treatment process for eventual release into the Blesbokspruit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0258-2244 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Trade-; World first: Full-scale BioSure plant commissioned; 2865725; South-Africa; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17495 Serial 494  
Permanent link to this record
 

 
Author Taylor, J.; Waters, J. openurl 
  Title Treating ARD; how, when, where and why Type Journal Article
  Year 2003 Publication Mining Environmental Management Abbreviated Journal  
  Volume 11 Issue 3 Pages 6-9  
  Keywords acid mine drainage; acid rock drainage; acidification; alkalinity; carbonate rocks; chemical properties; chemical reactions; coal; disposal barriers; economics; flocculation; ground water; heavy metals; human activity; ion exchange; limestone; mines; oxidation; oxides; permeability; pollution; porosity; pyrolusite; remediation; sedimentary rocks; surface water; waste disposal; waste management; water pollution; water treatment; wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-4218 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Treating ARD; how, when, where and why; 2004-045038; References: 8; illus. incl. 2 tables United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5528 Serial 225  
Permanent link to this record
 

 
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Puls, R.W. url  openurl
  Title Treatment of dissolved metals using permeable reactive barriers Type Journal Article
  Year 1998 Publication Groundwater Quality: Remediation and Protection Abbreviated Journal  
  Volume Issue 250 Pages 483-490  
  Keywords adsorption; aquifers; attenuation; dissolved materials; metals; nutrients; oxidation; pollutants; pollution; precipitation; reduction; water treatment Groundwater quality Pollution and waste management non radioactive Groundwater acid mine drainage aquifer pollution conference proceedings containment barrier metal tailings Canada Ontario Nickel Rim Mine United States North Carolina Elizabeth City mine water treatment  
  Abstract Permeable reactive barriers are a promising new approach to the treatment of dissolved contaminants in aquifers. This technology has progressed rapidly from laboratory studies to full-scale implementation over the past decade. Laboratory treatability studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4, and SO4. Small scale field studies have indicated the potential for treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4, and SO4. Permeable reactive barriers have been used in full-scale installations for the treatment of hexavalent chromium, dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn, and dissolved nutrients, including nitrate and phosphate. A full-scale barrier designed to prevent the release of contaminants associated with inactive mine tailings impoundment was installed at the Nickel Rim mine site in Canada in August 1995. This reactive barrier removes Fe, SO,, Ni and other metals. The effluent from the barrier is neutral in pH and contains no acid-generating potential, and dissolved metal concentrations are below regulatory guidelines. A full-scale reactive barrier was installed to treat Cr(VI) and halogenated hydrocarbons at the US Coast Guard site in Elizabeth City, North Carolina, USA in June 1996. This barrier removes Cr(VI) from >8 mg l(-1) to <0.01 mg l(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0144-7815 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Treatment of dissolved metals using permeable reactive barriers; Isip:000079718200072; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8601 Serial 178  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: