toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fisher, T.S.R.; Lawrence, G.A. url  openurl
  Title Treatment of acid rock drainage in a meromictic mine pit lake Type Journal Article
  Year 2006 Publication Journal of environmental engineering Abbreviated Journal  
  Volume 132 Issue 4 Pages 515-526  
  Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) meromictic lake acid mine drainage mine waste copper water pollution Bacteria microorganisms Canada Vancouver Island British Columbia North America  
  Abstract The Island Copper Mine pit near Port Hardy, Vancouver Island, B.C., Canada, was flooded in 1996 with seawater and capped with fresh water to form a meromictic (permanently stratified) pit lake of maximum depth 350 m and surface area 1.72 km2. The pit lake is being developed as a treatment system for acid rock drainage. The physical structure and water quality has developed into three distinct layers: a brackish and well-mixed upper layer; a plume stirred intermediate layer; and a thermally convecting lower layer. Concentrations of dissolved metals have been maintained well below permit limits by fertilization of the surface waters. The initial mine closure plan proposed removal of heavy metals by metal-sulfide precipitation via anaerobic sulfate-reducing bacteria, once anoxic conditions were established in the intermediate and lower layers. Anoxia has been achieved in the lower layer, but oxygen consumption rates have been less than initially predicted, and anoxia has yet to be achieved in the intermediate layer. If anoxia can be permanently established in the intermediate layer then biogeochemical removal rates may be high enough that fertilization may no longer be necessary. < copyright > 2006 ASCE.  
  Address Prof. G.A. Lawrence, Univ. of British Columbia, Vancouver, BC V6T 1Z4, Canada lawrence@civil.ubc.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0733-9372 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Apr.; Treatment of acid rock drainage in a meromictic mine pit lake; 2873922; United-States 38; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17494 Serial 72  
Permanent link to this record
 

 
Author Smith, I.J.H. openurl 
  Title AMD treatment, it works but are we using the right equipment? Type Journal Article
  Year 2000 Publication Tailings and mine waste ' Abbreviated Journal  
  Volume Issue Pages 419-427  
  Keywords Groundwater problems and environmental effects geomechanics abstracts: excavations (77 10 10) acid mine drainage conference proceedings methodology mine drainage remediation waste management  
  Abstract For the past 40 years various approaches have been developed to treat acid waters coming from abandoned as well as operating mining operations. System designs have evolved to meet increasingly stringent discharge permit limits for treated water, as well as to provide solid disposal within economic constraints. A treatment system for remediation of acid mine drainage (AMD) or acid groundwater (AG) requires two main steps: 1. The addition of chemicals to precipitate dissolved metals contained in the waters, and if necessary, to coagulate the precipitated solids ahead of physical separation. 2. Physical separation of the precipitated solids from the water so the water can be lawfully discharged from the site. Choosing the appropriate technology and equipment results in the most efficient plant design, the lowest capital outlay, and minimum operating cost. The goal of these plants is to discharge liquids and solids able to meet standards. The separation of solids from liquids can be achieved through various means, including gravity settling, flotation, mechanical dewatering, filtration and evaporation. As important as the liquid solids separation unit operations are, they are driven by the chemistry of the water to be treated. The content of the dissolved solids will influence the quality and quantity of the solids produced during precipitation. Thus the two aspects must be integrated, with chemistry first, then mechanical engineering. This presentation will provide an overview of a number of liquid solids separation tools currently being used to treat AMD-AG at several sites in the USA. It will also discuss how their operations are impacted by the chemistry of their particular acid water feeds. The tools used include clarifier-thickeners, solids contact clarifiers, dissolved air flotation, polishing filters, membrane filters, and mechanical dewatering devices (belt and filter presses, vacuum filters, and driers).  
  Address J.H. Smith III, SEPCO Incorporated, Fort Collins, CO, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Book; Conference-Paper; AMD treatment, it works but are we using the right equipment?; 2263351; Using Smart Source Parsing 00-Proceedings-of-the-7th-international-conference-Fort-Collins-January- 2000 Netherlands; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17541 Serial 237  
Permanent link to this record
 

 
Author Beck, P. openurl 
  Title CL:AIRE – Providing support for remediation research Type Journal Article
  Year 2003 Publication Land Contam. Reclam. Abbreviated Journal  
  Volume 11 Issue 2 Pages 99-104  
  Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) contaminated land remediation guideline acid mine drainage hydrochemistry  
  Abstract CL:AIRE (Contaminated Land: Applications in Real Environments) is a public-private partnership which was established in 1999 to encourage the demonstration of remediation research and technologies on contaminated sites throughout the UK. Project proposals are submitted to CL:AIRE and reviewed and approved by the CL:AIRE Technology & Research Group. CL:AIRE provides independent verification of its projects and plays a crucial role in the dissemination of project information. During the course of the project, progress is reported through the newsletter, CL:AIRE view, which is mailed free of charge to a database of more than 4500 stakeholders with an interest in contaminated land. Progress is also tracked on the CL:AIRE website at www.claire.co.uk. On completion of the project, a project report is published and a one page summary fact sheet is prepared. The fact sheet is distributed to our database subscribers and posted on the website. The project is also presented at the CL:AIRE Annual Project Conference. In addition, aspects of the research which have practical application will be published as CL:AIRE Research Bulletins. Acid mine waters discharging from abandoned mines represent a significant environmental problem in many parts of the UK. Considerable research has been carried out to understand the geochemical process involved, and the knowledge has been used to manage groundwater discharge through physical/chemical treatment and constructed wetlands. CL:AIRE supports the development of a national site for wetland research managed by the University of Newcastle and will encourage collaborative research projects to be submitted through CL:AIRE. CL:AIRE is currently supporting two projects which demonstrate remediation of acid mine drainage and is disseminating the results of this and other research to improve confidence in the use of these techniques.  
  Address P. Beck, CL:AIRE, 1 Great Cumberland Place, London W1H 7AL, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0513 ISBN Medium  
  Area Expedition Conference  
  Notes (up) CL:AIRE – Providing support for remediation research; 2530414; United-Kingdom 2; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17524 Serial 461  
Permanent link to this record
 

 
Author Conca, J.L.; Wright, J. url  openurl
  Title An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd Type Journal Article
  Year 2006 Publication Appl. Geochem. Abbreviated Journal  
  Volume 21 Issue 12 Pages 2188-2200  
  Keywords Pollution and waste management non radioactive Groundwater quality apatite groundwater remediation zinc lead cadmium acid mine drainage copper sulfate nitrate permeability water treatment precipitation chemistry  
  Abstract Phosphate-induced metal stabilization involving the reactive medium Apatite II(TM) [Ca10-xNax(PO4)6-x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d'Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L-1), has reduced Zn to near background in this region (about 100 μg L-1), and has reduced SO4 by between 100 and 200 mg L-1 and NO3 to below detection (50 μg L-1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Dec.; An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17248 Serial 44  
Permanent link to this record
 

 
Author Anonymous isbn  openurl
  Title Type Book Whole
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; discharge; effluents; industrial waste; mines; mining; pollution; smelting; soils; surface water; tailings; toxic materials; waste disposal; waste management; water pollution; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher University of Concepcion Place of Publication Concepcion Editor Castro, S.H.; Vergara, F.; Sanchez, M.A.; University of Concepcion, D. of M.E.C.  
  Language Summary Language Original Title  
  Series Editor Series Title Effluent treatment in the mining industry Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9562271560 Medium  
  Area Expedition Conference  
  Notes (up) Effluent treatment in the mining industry; 2002-047082; GeoRef; English; Individual chapters are cited separately illus. Approved no  
  Call Number CBU @ c.wolke @ 6212 Serial 481  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: