toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Blowes, D.W.; Bain, J.G.; Smyth, D.J.; Ptacek, C.J.; Jambor, J.L.; Blowes, D.W.; Ritchie, A.I.M. url  openurl
  Title Treatment of mine drainage using permeable reactive materials Type Journal Article
  Year 2003 Publication Environmental Aspects of Mine Wastes Abbreviated Journal  
  Volume 31 Issue Pages 361-376  
  Keywords (up) acid mine drainage; acidification; aquatic environment; aquifer vulnerability; aquifers; bacteria; biodegradation; Canada; case studies; chemical reactions; Cochrane District Ontario; concentration; damage; degradation; disposal barriers; Eastern Canada; effluents; environmental analysis; ferric iron; Fry Canyon; ground water; iron; Kidd Creek Site; metal ores; metals; mines; models; Monticello Canyon; Ontario; pollution; preferential flow; reactive barriers; remediation; sediments; solid waste; sulfate ion; sulfates; sulfides; tailings; Timmins Ontario; United States; uranium ores; Utah; waste disposal; waste management; waste rock mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0144-7815 ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of mine drainage using permeable reactive materials; Ccc:000186842900017; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 7910 Serial 182  
Permanent link to this record
 

 
Author Isaacson, A.E.; Jeffers, T.H. isbn  openurl
  Title Acid mine drainage remediation through applied water treatment systems Pollution prevention for process engineering Type Book Chapter
  Year 1995 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) acid mine drainage; acidification; aquifer vulnerability; aquifers; chemical reactions; discharge; dissolved materials; ground water; infiltration; ion exchange; leachate; metal ores; mining; mining geology; models; open-pit mining; pollutants; pollution; preventive measures; reclamation; remediation; soils; sulfides; surface mining; surface water; techniques; toxicity; uranium ores; waste water; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Engineering Foundation Place of Publication New York Editor Richardson, P.E.; Scheiner, B.J.; Lanzetta, F., Jr.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0939204533 Medium  
  Area Expedition Conference  
  Notes Acid mine drainage remediation through applied water treatment systems Pollution prevention for process engineering; GeoRef; English; 2000-063662; Engineering Foundation conference on Technical solution for pollution prevention in the mining and mineral processing industries, Palm Coast, FL, United States, Jan. 22-27, 1995 illus. Approved no  
  Call Number CBU @ c.wolke @ 6450 Serial 344  
Permanent link to this record
 

 
Author Ziemkiewicz, P.; Skousen, J.; Simmons, J. openurl 
  Title Cost benefit analysis of passive treatment systems Type Journal Article
  Year 2001 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) acid mine drainage; acidification; Augusta coal field; Big Bear Lake; carbonate rocks; coal mines; cost; dams; drainage basins; economics; ferric iron; Indiana; iron; limestone; metals; mines; optimization; oxidation; Pike County Indiana; pollution; Preston County West Virginia; pyrite; sedimentary rocks; South Fork Patoka River; spoils; sulfate ion; sulfides; surface water; United States; water pollution; water quality; water resources; water treatment; West Virginia 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher West Virginia Surface Mine Drainage Task Force Symposium Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings, 22nd West Virginia surface mine drainage task force symposium Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 2002-047125; Twenty-second West Virginia surface mine drainage task force symposium, Morgantown, WV, United States, April 3-4, 2001 References: 7; illus. incl. 9 tables; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5766 Serial 191  
Permanent link to this record
 

 
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Bennett, T.A.; Puls, R.W. url  openurl
  Title Treatment of inorganic contaminants using permeable reactive barriers Type Journal Article
  Year 2000 Publication J Contam Hydrol Abbreviated Journal  
  Volume 45 Issue 1-2 Pages 123-137  
  Keywords (up) acid mine drainage; adsorption; agricultural waste; aquifers; chemical reactions; chromium; concentration; contaminant plumes; decontamination; disposal barriers; dissolved materials; drainage; ground water; heavy metals; metals; nitrate ion; nutrients; permeability; phosphate ion; pollution; pump-and-treat; remediation; sulfate ion; waste disposal; water treatment mine water treatment Remediation Groundwater Metals Nutrients Radionuclides  
  Abstract Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4 and SO4. Small-scale field studies have demonstrated treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4 and SO4. Permeable reactive barriers composed of zero-valent iron have been used in full-scale installations for the treatment of Cr, U, and Tc. Solid-phase organic carbon in the form of municipal compost has been used to remove dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn. Dissolved nutrients, including NO3 and PO4, have been removed from domestic septic-system effluent and agricultural drainage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-7722 ISBN Medium  
  Area Expedition Conference  
  Notes Sept.; Treatment of inorganic contaminants using permeable reactive barriers; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9401.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 9401 Serial 46  
Permanent link to this record
 

 
Author Swoboda-Colberg, N.; Colberg, P.; Smith, J.L. openurl 
  Title Constructed vertical flow aerated wetlands Type RPT
  Year 1994 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) acid mine drainage; aeration; Butte Montana; carbonate rocks; case studies; clastic sediments; Clear Creek County Colorado; Colorado; construction; controls; fluid dynamics; gravel; heavy metals; Idaho Springs Colorado; limestone; Montana; pollution; rates; sedimentary rocks; sediments; Silver Bow County Montana; substrates; tailings; United States; waste water; water; water management; water quality; water treatment; wetlands 22, Environmental geology  
  Abstract In the report, wetland technology is described in which the main reactive layer is limestone gravel (rather than organic material) which is overlain by a fine gravel filter and soil. The three-year project included laboratory and field studies. Vertical aerated wetlands, simulated by columns, constructed in the field and in the laboratory, were operated during the project. The report presents a summary of results given in previous reports and summaries of results obtained using water from Butte, MT, and field studies at the Rockford Tunnel, near Idaho Springs, CO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor University of Wyoming, L.W.Y.U.S. performer Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Constructed vertical flow aerated wetlands; 1998-003373; GeoRef; English; Final report. Grant DI-196561 National Technical Information Service, (703)605-6000, order number PB96-196811NEG, Springfield, VA, United States Approved no  
  Call Number CBU @ c.wolke @ 6506 Serial 226  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: