toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Bennett, T.A.; Puls, R.W. url  openurl
  Title Treatment of inorganic contaminants using permeable reactive barriers Type Journal Article
  Year 2000 Publication J Contam Hydrol Abbreviated Journal  
  Volume 45 Issue 1-2 Pages (down) 123-137  
  Keywords acid mine drainage; adsorption; agricultural waste; aquifers; chemical reactions; chromium; concentration; contaminant plumes; decontamination; disposal barriers; dissolved materials; drainage; ground water; heavy metals; metals; nitrate ion; nutrients; permeability; phosphate ion; pollution; pump-and-treat; remediation; sulfate ion; waste disposal; water treatment mine water treatment Remediation Groundwater Metals Nutrients Radionuclides  
  Abstract Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4 and SO4. Small-scale field studies have demonstrated treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4 and SO4. Permeable reactive barriers composed of zero-valent iron have been used in full-scale installations for the treatment of Cr, U, and Tc. Solid-phase organic carbon in the form of municipal compost has been used to remove dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn. Dissolved nutrients, including NO3 and PO4, have been removed from domestic septic-system effluent and agricultural drainage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-7722 ISBN Medium  
  Area Expedition Conference  
  Notes Sept.; Treatment of inorganic contaminants using permeable reactive barriers; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9401.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 9401 Serial 46  
Permanent link to this record
 

 
Author Banks, S.B. url  openurl
  Title The UK coal authority minewater-treatment scheme programme: Performance of operational systems Type Journal Article
  Year 2003 Publication Jciwem Abbreviated Journal  
  Volume 17 Issue 2 Pages (down) 117-122  
  Keywords mine water treatment  
  Abstract This paper summarises the performance of minewater-treatment schemes which are operated under the Coal Authority's National Minewater Treatment Programme. Commonly-used design criteria and performance indicators are briefly discussed, and the performance of wetland systems which are operated by the Coal Authority is reviewed. Most schemes for which data are available remove more than 90% iron, and average area-adjusted iron-removal rates range from 1.5 to 5.5 g Fe/m(2). d. These values, which are based on performance calculations, can be distorted by several factors, including the practice of maximising wetland areas to make best use of available land. Removal rates are limited by influent iron loadings, and area-adjusted iron-removal rates should be used with caution when assessing wetland performance. Sizing criteria for all types of treatment system might be refined if more detailed data become available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-7359 ISBN Medium  
  Area Expedition Conference  
  Notes May; The UK coal authority minewater-treatment scheme programme: Performance of operational systems; Wos:000183641000009; Times Cited: 1; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10018.pdf; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17457 Serial 9  
Permanent link to this record
 

 
Author Bechard, G. url  openurl
  Title Use Of Cellulosic Substrates For The Microbial Treatment Of Acid-Mine Drainage Type Journal Article
  Year 1994 Publication Journal of Environmental Quality Abbreviated Journal  
  Volume 23 Issue 1 Pages (down) 111-116  
  Keywords mine water treatment  
  Abstract A mixed aerobic-anaerobic microbial treatment process was developed previously for acid mine drainage (AMD) using straw as a substrate. The process was effective only if AMD was supplemented with sucrose. The present study was conducted to determine which, if any, of three cellulosic materials could sustain the microbial treatment of AMD without the addition of a sucrose amendment and to determine the effect of the retention time on the performance of the reactors. The performance of small reactors that treated simulated AMD in the continuous mode was evaluated using alfalfa (Medicago sativa L.) hay, timothy (Phleum pratense L.) hay, and straw with a 5 d retention time. Parameters measured were pH, Fe, Al, sulfate, and ammonium. Timothy hay and straw sustained AMD mitigation for 3 wk, and thereafter all activity ceased. After the reactors ceased treating AMD, the mitigative activities were reinitiated by the addition of sucrose, but not by urea. Alfalfa sustained AMD mitigation for a longer time period than either straw or timothy. The effect of three retention times, 3.5, 7, and 35 d, was then investigated for reactors containing fresh alfalfa. Increasing the retention time resulted in better metal removal and a greater pH increase. With a 7-d retention time, 75 L of simulated AMD were neutralized from a pH of 3.5 to a pH value greater than 6.5. Reactors operating with a 3.5-d retention time treated only 58.3 L of simulated AMD before failing. Ammonium was detected in effluents of active reactors. The results of this study indicate that a low maintenance microbial treatment system can be developed with alfalfa as a substrate without the addition of a sucrose amendment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Use Of Cellulosic Substrates For The Microbial Treatment Of Acid-Mine Drainage; Wos:A1994mu33000017; Times Cited: 22; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17194 Serial 89  
Permanent link to this record
 

 
Author Zou, L.H. url  openurl
  Title Sulfide precipitation flotation for treatment of acidic mine waste water Type Journal Article
  Year 2000 Publication Transactions of Nonferrous Metals Society of China Abbreviated Journal  
  Volume 10 Issue Pages (down) 106-109  
  Keywords mine water treatment  
  Abstract Sulfide precipitation flotation of copper-iron-bearing acidic waste water from a large copper mine and the stimulated waste water were studied. The pH of the waste water was 2.2, with 130 mg/L Cu2+ and 500 mg/L Fe3+ (Fe2+). Results show that, when Na2S was added as precipitating agent, sodium butylxanthate as collector and at pH 2.0, the removal of copper could be as high as 99.7 % and the residual copper decreased to 0.2 mg/L, however, almost no iron was removed. When the floated solution was neutralized to pH = 8.0, more than 98 % iron was precipitated and the residual iron was less than 10 mg/L. In experiment on actual mine effluents, after the use of precipitate flotation technology to recover copper and pH neutralization to precipitate iron, the treated waste water does meet the emission standards for sewage and valuable floating copper graded 37.12%. The chemical calculation and mechanism of solution were also presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Sulfide precipitation flotation for treatment of acidic mine waste water; Wos:000088249500025; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17086 Serial 128  
Permanent link to this record
 

 
Author Carland, R.M. url  openurl
  Title Use of natural sedimentary zeolites for metal ion recovery from hydrometallurgical solutions and for the environmental remediation of acid mine drainage Type Journal Article
  Year 1995 Publication Proceedings of the Xix International Mineral Processing Congress, Vol 4 Abbreviated Journal  
  Volume Issue Pages (down) 95-100  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Use of natural sedimentary zeolites for metal ion recovery from hydrometallurgical solutions and for the environmental remediation of acid mine drainage; Isip:A1995be33e00020; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17179 Serial 145  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: