toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gusek, J.J. openurl 
  Title Type Book Whole
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages (down) 1-14 [Cd-Rom]  
  Keywords Constructed wetlands acid mine drainage heavy metals sulfate reduction  
  Abstract There are basically two kinds of biological passive treatment cells for treating mine drainage. Aerobic Cells, containing cattails and other plants, are typically applicable to coal mine drainage where iron and manganese and mild acidity are problematic. Anaerobic Cells or Sulfate-Reducing Bioreactors are typically applicable to metal mine drainage with high acidity and a wide range of metals. Most passive treatment systems employ one or both of these cell types. The track record of aerobic cells in treating coal mine drainage is impressive, especially in the eastern coalfields. Sulfate-reducing bioreactors have tremendous potential at metal mines and coal mines, but have not seen as wide an application. This paper presents the advantages of sulfate-reducing bioreactors in treating mine drainage, including: the ability to work in cold, high altitude environments, handle high flow rates of mildly affected ARD in moderate acreage footprints, treat low pH acid drainage with a wide range of metals and anions including uranium, selenium, and sulfate, accept acid drainagecontaining dissolved aluminum without clogging with hydroxide sludge, have life-cycle costs on the order of $0.50 per thousand gallons, and be integrated into “semi-passive” systems that might be powered by liquid organic wastes. Sulfate reducing bioreactors might not be applicable in every abandoned mine situation. However a phased design program of laboratory, bench, and pilot scale testing has been shown to increase the likelihood of a successful design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Park City Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings, Annual Conference – National Association of Abandoned Mine Land Programs Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Sulfate-Reducing Bioreactor Design and Operating Issues – Is this the Passive Treatment Technology for your Mine Drainage?; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb. Approved no  
  Call Number CBU @ c.wolke @ 17348 Serial 364  
Permanent link to this record
 

 
Author Cravotta, C.A., III; Watzlaf, G.R.; Naftz, D.L.; Morrison, S.J.; Fuller, C.C.; Davis, J.A. url  isbn
openurl 
  Title Design and performance of limestone drains to increase pH and remove metals from acidic mine drainage Handbook of groundwater remediation using permeable reactive barriers; applications to radionuclides, trace metals, and nutrients Type Book Chapter
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords acid mine drainage; alkaline earth metals; aquatic environment; aquifers; calcium; carbonate rocks; chemical properties; construction; construction materials; crushed stone; dissolved materials; drainage; effluents; ground water; limestone; magnesium; metals; pH; pollution; porous materials; precipitation; retention; saturation; sedimentary rocks; sulfate ion; suspended materials 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication Amsterdam Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0125135637 Medium  
  Area Expedition Conference  
  Notes Design and performance of limestone drains to increase pH and remove metals from acidic mine drainage Handbook of groundwater remediation using permeable reactive barriers; applications to radionuclides, trace metals, and nutrients; GeoRef; English; 2004-040518; References: 66; illus. incl. 4 tables Approved no  
  Call Number CBU @ c.wolke @ 5686 Serial 81  
Permanent link to this record
 

 
Author Younger, P.L.; Cornford, C. openurl 
  Title Mine water pollution from Kernow to Kwazulu-Natal; geochemical remedial options and their selection in practice Type Journal Article
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords Africa Bolivia case studies Cornwall England cost decision-making decontamination Durham England England Europe geochemistry Great Britain Hlobane Colliery hydrology Kernow England KwaZulu-Natal South Africa metals Milluni Mine mine drainage monitoring pollutants pollution Quaking Houses England remediation South Africa South America South Crofty Mine South-West England Southern Africa United Kingdom water treatment Western Europe Wheal Jane Mine 22, Environmental geology  
  Abstract Pollution by mine drainage is a major problem in many parts of the world. The most frequent contaminants are Fe, Mn, Al and SO (sub 4) with locally important contributions by other metals/metalloids including (in order of decreasing frequency) Zn, Cu, As, Ni, Cd and Pb. Remedial options for such polluted drainage include monitored natural attenuation, physical intervention to minimise pollutant release, and active and passive water treatment technologies. Based on the assessment of the key hydrological and geochemical attributes of mine water discharges, a rational decision-making framework has now been developed for deciding which (or which combinations) of these options to implement in a specific case. Five case studies illustrate the application of this decision-making process in practice: Wheal Jane and South Crofty (Cornwall), Quaking Houses (Co Durham), Hlobane Colliery (South Africa) and Milluni Tin Mine (Bolivia). In many cases, particularly where the socio-environmental stakes are particularly high, the economic, political and ecological issues will prove even more challenging than the technical difficulties involved in implementing remedial interventions which will be robust in the long term. Hence truly “holistic” mine water remediation is a multi-dimensional business, involving teamwork by a range of geoscientific, hydroecological and socio-economic specialists.  
  Address  
  Corporate Author Thesis  
  Publisher Proceedings of the Ussher Society, vol.10, Part 3 Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title 40th annual meeting of the Ussher Society Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 2004-019557; 40th annual meeting of the Ussher Society, Saint Austell, United Kingdom, Jan. 3-4, 2002 Scott Simpson lecture References: 39; illus. incl. 3 tables; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 16506 Serial 194  
Permanent link to this record
 

 
Author Younger, P.L.; Banwart, S.A.; Hedin, R.S. isbn  openurl
  Title Type Book Whole
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords acid mine drainage acidification active treatment aquifer vulnerability aquifers bioremediation chemical composition critical load decision-making discharge engineering properties geomembranes ground water impact statements karst hydrology microorganisms mine dewatering mines natural attenuation pollution regulations remediation risk assessment sedimentation sludge solute transport surface water tailings tailings ponds waste management water management water pollution water quality weathering wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Kluwer Academic Publishers Place of Publication Dordrecht Editor Alloway, B.J.; Trevors, J.T.  
  Language Summary Language Original Title  
  Series Editor Series Title Mine water; hydrology, pollution, remediation Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 140200138x; 1202001371 Medium  
  Area Expedition Conference  
  Notes Mine water; hydrology, pollution, remediation; 2003-030514; GeoRef; English; Includes appendix References: 516; illus. Approved no  
  Call Number CBU @ c.wolke @ 16504 Serial 196  
Permanent link to this record
 

 
Author Wildeman, T.R.; Bednar, A.J.; Gusek, J.J.; Pinto, A. openurl 
  Title A review of the passive treatment of arsenic Hardrock mining 2002; issues shaping the industry Type Book Chapter
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords acid mine drainage; arsenic; case studies; chemical properties; drainage; experimental studies; laboratory studies; metals; mines; Nevada; passive treatment; pollution; tailings; toxic materials; United States; waste water 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes A review of the passive treatment of arsenic Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046184; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no  
  Call Number CBU @ c.wolke @ 5627 Serial 210  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: