toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R. url  openurl
  Title Removal of heavy metals from mine waters by natural zeolites Type Journal Article
  Year 2005 Publication Environ Sci Technol, ES & T Abbreviated Journal  
  Volume 39 Issue 12 Pages 4606-4613  
  Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive remediation heavy metal mine drainage acid mine drainage; acidification; Central Europe; chemical composition; chemical fractionation; dissolved materials; Europe; framework silicates; geochemistry; grain size; heavy metals; hydrochemistry; ion exchange; lead; metals; mines; mining; mobilization; models; pH; pollutants; pollution; precipitation; remediation; samples; silicates; spectra; Switzerland; toxic materials; X-ray diffraction data; X-ray fluorescence spectra; zeolite group  
  Abstract  
  Address G. Furrer, Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Zurich, Grabenstrasse 3, CH-8952 Schlieren, Switzerland gerhard.furrer@env.ethz.ch  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x ISBN Medium  
  Area Expedition Conference  
  Notes Removal of heavy metals from mine waters by natural zeolites; 2006-086777; References: 42; illus. incl. 3 tables United States (USA); GeoRef; English Approved no  
  Call Number (down) CBU @ c.wolke @ 5382 Serial 71  
Permanent link to this record
 

 
Author Reisinger, R.W.; Gusek, J. openurl 
  Title Mitigation of water contamination at the historic Ferris-Haggarty Mine, Wyoming Type Journal Article
  Year 1999 Publication Min. Eng. Abbreviated Journal  
  Volume 51 Issue 8 Pages 49-53  
  Keywords Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine copper hydrogeology mine drainage United States Wyoming Ferris Haggarty Mine  
  Abstract An historic underground copper mine in Wyoming is discharging neutral but copper-laden water into a pristine creek. The EPA-deferred site qualifies for reclamation by the Wyoming Abandoned Mine Land (AML) program. The cleanup goal is to restore the discharge so that the creek can eventually support a trout fishery. Hydrological and geochemical investigations underground have suggested two sources of mine water: one clean and the other containing copper. Results of bench- and pilot-scale tests support the viability of using low-cost passive treatment techniques to reduce copper concentrations in the near-freezing mine discharge.  
  Address R.W. Reisinger, Knight Piesold LLC, Denver, CO, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-5187 ISBN Medium  
  Area Expedition Conference  
  Notes Mitigation of water contamination at the historic Ferris-Haggarty Mine, Wyoming; 0434643; United-States 5; Geobase Approved no  
  Call Number (down) CBU @ c.wolke @ 17637 Serial 263  
Permanent link to this record
 

 
Author Benner, S.G.; Blowes, D.W.; Ptacek, C.J. url  openurl
  Title A full-scale porous reactive wall for prevention of acid mine drainage Type Journal Article
  Year 1997 Publication Ground Water Monitoring and Remediation Abbreviated Journal  
  Volume 17 Issue 4 Pages 99-107  
  Keywords acid mine drainage alkalinity bacteria Canada case studies concentration dissolved materials drainage Eastern Canada ground water mines observation wells Ontario permeability pH pollution porous materials recharge reduction remediation site exploration Sudbury District Ontario sulfate ion surface water waste disposal water pollution Groundwater quality Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 11) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) groundwater protection permeable barrier acid mine drainage aquifer groundwater acid min drainage contamination permeable barrier groundwater protection permeable barrier acid mine drainage aquifer Canada, Ontario, Sudbury, Nickel Rim  
  Abstract The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problem is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water existing the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentration decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L, pH increases from 5.8 to 7.0; and alkalinity (as CaCO<inf>3</inf>) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.  
  Address Dr. S.G. Benner, Earth Sciences Department, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1069-3629 ISBN Medium  
  Area Expedition Conference  
  Notes Review; A full-scale porous reactive wall for prevention of acid mine drainage; 0337197; United-States 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10621.pdf; Geobase Approved no  
  Call Number (down) CBU @ c.wolke @ 17555 Serial 67  
Permanent link to this record
 

 
Author Sanders, F.; Rahe, J.; Pastor, D.; Anderson, R. openurl 
  Title Wetlands treat mine runoff Type Journal Article
  Year 1999 Publication Civil Engineering Abbreviated Journal  
  Volume 69 Issue 1 Pages 53-55  
  Keywords Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine acid mine drainage constructed wetland heavy metal remediation United States Montana Blackfoot River  
  Abstract In the late 1890s, silver, lead and zinc deposits were discovered along the headwaters of the Blackfoot River, northeast of Missoula, Mont. Settlers began mining the metals in earnest, and eventually the mines became known as the Upper Blackfoot Mining Complex (UBMC). Many of the mines were operated long enough to supply metals for World War II weaponry, but after the war the mines were abandoned, and by the 1960s, their orange-tainted runoff began to concern both passersby and state officials. In 1991, the state contacted the current owners of several of those mines-including the Mike Horse and the Anaconda-to negotiate a voluntary cleanup. The American Smelting and Refining Co. (ASARCO) and the Atlantic Richfield Co. (ARCO) agreed to remediate the sites' metal-enriched, moderately to severely acidic drainage, which was discharging into the upper Blackfoot River. As part of effort to reclaim the Mike Horse and Anaconda mines, engineers with McCulley, Frick and Gilman Inc. (MFG), Boulder, Colo., developed an integrated, passive wetland treatment system that will take several years to reach full treatment capacity in the high-elevation environment, but will last for decades. (Constructed and restored wetlands have also been part of the remediation of other UBMC mines, such as the Carbonate and Paymaster mines.) The Mike Horse and Anaconda system, designed to meet National Pollutant Discharge Elimination Systems (NPDES) restrictions, concentrates primarily on zinc and iron and, to a lesser extent, on copper, lead and other metals.  
  Address F. Sanders, McCulley, Frick and Gilman Inc., Boulder, CO, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-7024 ISBN Medium  
  Area Expedition Conference  
  Notes Wetlands treat mine runoff; 0411276; United-States; Geobase Approved no  
  Call Number (down) CBU @ c.wolke @ 17551 Serial 256  
Permanent link to this record
 

 
Author openurl 
  Title 'Green' company offers desalination technology Type Journal Article
  Year 1998 Publication Water Sewage and Effluent Abbreviated Journal  
  Volume 18 Issue 4 Pages 9-11  
  Keywords Groundwater problems and environmental effects geomechanics abstracts: excavations (77 10 10) acid mine drainage environmental effect mine drainage  
  Abstract Water and wastewater treatment activities, projects and capabilities of South African environmental engineering specialist Envig are detailed. The company, as part of the Weir Wesgarth Consortium, has pre-qualified for the major Namibian Water Supply Project, one of the largest of its kind to date in southern Africa. This project involves the desalination of seawater to meet increasing water demand and shortfalls. Envig, if awarded the contract, would be involved in construction of three or four reverse osmosis or mechanical vapour compression sea water desalination plants and associated infrastructure. The company is also involved in a mine water desalination project at the Eskom Tutuka Power Station. A reverse osmosis plant using low fouling maintenance is being installed to deal with acid mine drainage water. Details of the design and operation of this plant are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0257-8700 ISBN Medium  
  Area Expedition Conference  
  Notes 'Green' company offers desalination technology; 0432290; South-Africa; Geobase Approved no  
  Call Number (down) CBU @ c.wolke @ 17548 Serial 496  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: