toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Taylor, J.; Waters, J. openurl 
  Title Treating ARD; how, when, where and why Type Journal Article
  Year 2003 Publication Mining Environmental Management Abbreviated Journal  
  Volume 11 Issue 3 Pages 6-9  
  Keywords acid mine drainage; acid rock drainage; acidification; alkalinity; carbonate rocks; chemical properties; chemical reactions; coal; disposal barriers; economics; flocculation; ground water; heavy metals; human activity; ion exchange; limestone; mines; oxidation; oxides; permeability; pollution; porosity; pyrolusite; remediation; sedimentary rocks; surface water; waste disposal; waste management; water pollution; water treatment; wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-4218 ISBN Medium  
  Area Expedition Conference  
  Notes Treating ARD; how, when, where and why; 2004-045038; References: 8; illus. incl. 2 tables United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5528 Serial 225  
Permanent link to this record
 

 
Author (down) Tarutis Jr, W.J.; Stark, L.R.; Williams, F.M. url  openurl
  Title Sizing and performance estimation of coal mine drainage wetlands Type Journal Article
  Year 1999 Publication Ecological Engineering Abbreviated Journal  
  Volume 12 Issue 3-4 Pages 353-372  
  Keywords mine water treatment coal mine drainage constructed wetlands efficiency first-order removal loading rate removal kinetics sizing zero-order removal constructed wetlands water-quality iron kinetics removal model phosphorus retention mechanism design Wetlands and estuaries geographical abstracts: physical geography hydrology (71 6 8) acid mine drainage effluent performance assessment remediation wetland management  
  Abstract The effectiveness of wetland treatment of acid mine drainage (AMD) was assessed using three measures of performance: treatment efficiency, area-adjusted removal, and first-order removal. Mathematical relationships between these measures were derived from simple kinetic equations. Area-adjusted removal is independent of pollutant concentration (zero-order reaction kinetics), while first-order removal is dependent on concentration. Treatment efficiency is linearly related to area-adjusted removal and exponentially related to first-order removal at constant hydraulic loading rates (flow/area). Examination of previously published data from 35 natural AMD wetlands revealed that statistically significant correlations exist between several of the performance measures for both iron and manganese removal, but these correlations are potentially spurious because these measures are derived from, and are mathematical rearrangements of, the same operating data. The use of treatment efficiency as a measure of performance between wetlands is not recommended because it is a relative measure that does not account for influent concentration differences. Area-adjusted removal accounts for mass loading effects, but it fails to separate the flow and concentration components, which is necessary if removal is first-order. Available empirical evidence suggests that AMD pollutant removal is better described by first-order kinetics. If removal is first-order, the use of area-adjusted rates for determining the wetland area required for treating relatively low pollutant concentrations will result in undersized wetlands. The effects of concentration and flow rate on wetland area predictions for constant influent loading rates also depend on the kinetics of pollutant removal. If removal is zero-order, the wetland area required to treat a discharge to meet some target effluent concentration is a decreasing linear function of influent concentration (and an inverse function of flow rate). However, if removal is first-order, the required wetland area is a non-linear function of the relative influent concentration. Further research is needed for developing accurate first-order rate constants as a function of influent water chemistry and ecosystem characteristics in order to successfully apply the first-order removal model to the design of more effective AMD wetland treatment systems.  
  Address W.J. Tarutis Jr., Department of Natural Science, Lackawanna Junior College, 501 Vine Street, Scranton, PA 18509, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8574 ISBN Medium  
  Area Expedition Conference  
  Notes Feb.; Sizing and performance estimation of coal mine drainage wetlands; 0427766; Netherlands 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10596.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 10596 Serial 25  
Permanent link to this record
 

 
Author (down) Tabak, H.H.; Govind, R. url  openurl
  Title Advances in biotreatment of acid mine drainage and biorecovery of metals 19th annual international conference on Soils, sediments, and water; abstracts Type Book Chapter
  Year 2004 Publication Soil & Sediment Contamination Abbreviated Journal  
  Volume Issue Pages 171-172  
  Keywords acid mine drainage; acid rock drainage; acidification; bacteria; biodegradation; bioreactors; bioremediation; decontamination; effluents; geomembranes; heavy metals; pollutants; pollution; remediation; sulfate reducing bacteria; sulfates; sulfides; Thiobacillus; waste water 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication 13 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Advances in biotreatment of acid mine drainage and biorecovery of metals 19th annual international conference on Soils, sediments, and water; abstracts; GeoRef; English; 2006-064109; 19th annual international conference on Soils, sediments, and water, Amherst, MA, United States, Oct. 20-23, 2003 Approved no  
  Call Number CBU @ c.wolke @ 5471 Serial 13  
Permanent link to this record
 

 
Author (down) Swoboda-Colberg, N.; Colberg, P.; Smith, J.L. openurl 
  Title Constructed vertical flow aerated wetlands Type RPT
  Year 1994 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; aeration; Butte Montana; carbonate rocks; case studies; clastic sediments; Clear Creek County Colorado; Colorado; construction; controls; fluid dynamics; gravel; heavy metals; Idaho Springs Colorado; limestone; Montana; pollution; rates; sedimentary rocks; sediments; Silver Bow County Montana; substrates; tailings; United States; waste water; water; water management; water quality; water treatment; wetlands 22, Environmental geology  
  Abstract In the report, wetland technology is described in which the main reactive layer is limestone gravel (rather than organic material) which is overlain by a fine gravel filter and soil. The three-year project included laboratory and field studies. Vertical aerated wetlands, simulated by columns, constructed in the field and in the laboratory, were operated during the project. The report presents a summary of results given in previous reports and summaries of results obtained using water from Butte, MT, and field studies at the Rockford Tunnel, near Idaho Springs, CO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor University of Wyoming, L.W.Y.U.S. performer Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Constructed vertical flow aerated wetlands; 1998-003373; GeoRef; English; Final report. Grant DI-196561 National Technical Information Service, (703)605-6000, order number PB96-196811NEG, Springfield, VA, United States Approved no  
  Call Number CBU @ c.wolke @ 6506 Serial 226  
Permanent link to this record
 

 
Author (down) Swayze, G.A. url  openurl
  Title Imaging spectroscopy: A new screening tool for mapping acidic mine waste Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1531-+  
  Keywords mine water treatment  
  Abstract Imaging spectroscopy is a relatively new remote sensing tool that provides a rapid method to screen entire mining districts for potential sources of surface acid drainage. An imaging spectrometer known as the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) measures light reflected from the surface in 224 spectral channels from 0.4 – 2.5 mum. Spectral data from this instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, Colorado. Here, the process of pyrite oxidation at the surface produces acidic water that is gradually neutralized as it drains away from mine waste, depositing a central jarosite zone surrounded by a jarosite + goethite zone, in turn surrounded by a goethite zone with a discontinuous hematite rim zone. Leaching tests show that pH is most acidic in the jarosite and jarosite+goethite zones and is near-neutral in the goethite zone. Measurements indicate that metals leach from minerals and amorphous materials in the jarosite + goethite and jarosite zones at concentrations 10 – 50 times higher than from goethite zone minerals. Goethite zones that fully encircle mine waste may indicate some attenuation of leachate metals and thus reduced metal loading to streams. The potential for impact by acidic drainage is highest where streams intersect the jarosite and jarosite + goethite zones. In these areas, metal-rich acidic surface runoff may flow directly into streams. The U.S. Environmental Protection Agency estimates (U.S. EPA, 1998) that mineral maps made from AVIRIS data at Leadville have accelerated remediation efforts by two years and saved over $2 million in cleanup costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Imaging spectroscopy: A new screening tool for mapping acidic mine waste; Isip:000169875500152; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17111 Serial 164  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: