toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ntengwe, F.W. url  openurl
  Title An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia Type Journal Article
  Year 2005 Publication Phys. Chem. Earth Abbreviated Journal  
  Volume 30 Issue 11-16 Spec. Iss. Pages 726-734  
  Keywords mine water treatment Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) wastewater pollution control acid mine drainage Hyacinthus Zambia Southern Africa Sub Saharan Africa Africa Eastern Hemisphere World  
  Abstract The wastewaters coming from mining operations usually have low pH (acidic) values and high levels of metal pollutants depending on the type of metals being extracted. If unchecked, the acidity and metals will have an impact on the surface water. The organisms and plants can adversely be affected and this renders both surface and underground water unsuitable for use by the communities. The installation of a treatment plant that can handle the wastewaters so that pH and levels of pollutants are reduced to acceptable levels provides a solution to the prevention of polluting surface and underground waters and damage to ecosystems both in water and surrounding soils. The samples were collected at five points and analyzed for acidity, total suspended solids, and metals. It was found that the pH fluctuated between pH 2 when neutralization was forgotten and pH 11 when neutralization took place. The levels of metals that could cause impacts to the water ecosystem were found to be high when the pH was low. High levels of metals interfere with multiplication of microorganisms, which help in the natural purification of water in stream and river bodies. The fish and hyacinth placed in water at the two extremes of pH 2 and pH 11 could not survive indicating that wastewaters from mining areas should be adequately treated and neutralized to pH range 6-9 if life in natural waters is to be sustained. < copyright > 2005 Elsevier Ltd. All rights reserved.  
  Address F.W. Ntengwe, Copperbelt University, School of Technology, P.O. Box 21692, Kitwe, Zambia fntengwe@cbu.ac.zm  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Review; An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia; 2790318; United-Kingdom 23; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10301.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17497 Serial 24  
Permanent link to this record
 

 
Author Rukin, N. openurl 
  Title Whittle mine water treatment system: In-river attenuation of manganese Type Journal Article
  Year 2003 Publication Land Contam. Reclam. Abbreviated Journal  
  Volume 11 Issue 2 Pages 137-144  
  Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) river water natural attenuation manganese water treatment mine drainage coal mine  
  Abstract Much work has been undertaken on the design of treatment systems to remove iron from ochreous mine water discharges. Unlike iron, manganese removal is far more difficult and generally requires active chemical dosing rather than passive treatment. The need for manganese removal can therefore significantly change the economics, management attention and sustainability of a site. Understanding natural attenuation of manganese in river systems is therefore key to deciding whether (active) manganese treatment is needed to protect downstream receptors. Nuttall (2002, this volume) describes the effectiveness of the passive treatment system at Whittle in reducing both iron and manganese concentrations in ochreous mine waters. This paper discusses the results of in-river monitoring and provides evidence for manganese removal downstream of the discharge point. In addition to dilution, attenuation appears to be in the order of 20 to 50%, depending on relative rates of mine water discharge and river flows. Such attenuation means that active treatment may not be needed for the long-term operation of the Whittle scheme. Operation of the scheme commenced in July 2002, with monitoring to further examine evidence for manganese attenuation and any impact on the ecology of the recipient watercourses.  
  Address N. Rukin, Entec UK Ltd., 160-162 Abbey Foregate, Shrewsbury SY2 6BZ, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0513 ISBN Medium  
  Area Expedition Conference  
  Notes Whittle mine water treatment system: In-river attenuation of manganese; 2530418; United-Kingdom 2; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17521 Serial 257  
Permanent link to this record
 

 
Author Skousen, J.; Rose, A.; Geidel, G.; Foreman, J.; Evans, R.; Hellier, W. openurl 
  Title A handbook of technologies for avoidance and remediation of acid mine drainage Type RPT
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage bioremediation coal mines constructed wetlands disposal barriers ion exchange mines pollution pumping recharge remediation reverse osmosis surface water technology waste disposal waste management water treatment wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Acid Drainage Technology Initiative, A. and R.W.G.U.S. Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes A handbook of technologies for avoidance and remediation of acid mine drainage; 2001-074240; GeoRef; English; References: 72; illus. incl. 5 tables West Virginia University, National Mine Land Reclamation Center, Morgantown, WV, United States Approved no  
  Call Number CBU @ c.wolke @ 16615 Serial 245  
Permanent link to this record
 

 
Author Skousen, J.G.; Sexstone, A.; Ziemkiewicz, P.F. isbn  openurl
  Title Type Book Whole
  Year 2000 Publication Abbreviated Journal  
  Volume Issue Pages 131-168  
  Keywords acid mine drainage; ground water; pollution; remediation; surface water; waste management; water pollution; water treatment 22, Environmental geology Umwelt Bergbau AMD  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Society of Agronomy Place of Publication Madison, Wis. Editor Barnhisel Richard, I.; Darmody Robert, G.; Daniels, W.L.  
  Language Summary Language Original Title  
  Series Editor Series Title Reclamation of Drastically Disturbed Lands Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-89118-146-6 Medium  
  Area Expedition Conference  
  Notes Acid Mine Drainage Control and Treatment; 2; AMD ISI | Wolkersdorfer; SSZB; TUBAFG 01.4564 1 Abb., 3 Tab. Approved no  
  Call Number CBU @ c.wolke @ 9907 Serial 242  
Permanent link to this record
 

 
Author Smith, I.J.H. openurl 
  Title AMD treatment, it works but are we using the right equipment? Type Journal Article
  Year 2000 Publication Tailings and mine waste ' Abbreviated Journal  
  Volume Issue Pages 419-427  
  Keywords Groundwater problems and environmental effects geomechanics abstracts: excavations (77 10 10) acid mine drainage conference proceedings methodology mine drainage remediation waste management  
  Abstract For the past 40 years various approaches have been developed to treat acid waters coming from abandoned as well as operating mining operations. System designs have evolved to meet increasingly stringent discharge permit limits for treated water, as well as to provide solid disposal within economic constraints. A treatment system for remediation of acid mine drainage (AMD) or acid groundwater (AG) requires two main steps: 1. The addition of chemicals to precipitate dissolved metals contained in the waters, and if necessary, to coagulate the precipitated solids ahead of physical separation. 2. Physical separation of the precipitated solids from the water so the water can be lawfully discharged from the site. Choosing the appropriate technology and equipment results in the most efficient plant design, the lowest capital outlay, and minimum operating cost. The goal of these plants is to discharge liquids and solids able to meet standards. The separation of solids from liquids can be achieved through various means, including gravity settling, flotation, mechanical dewatering, filtration and evaporation. As important as the liquid solids separation unit operations are, they are driven by the chemistry of the water to be treated. The content of the dissolved solids will influence the quality and quantity of the solids produced during precipitation. Thus the two aspects must be integrated, with chemistry first, then mechanical engineering. This presentation will provide an overview of a number of liquid solids separation tools currently being used to treat AMD-AG at several sites in the USA. It will also discuss how their operations are impacted by the chemistry of their particular acid water feeds. The tools used include clarifier-thickeners, solids contact clarifiers, dissolved air flotation, polishing filters, membrane filters, and mechanical dewatering devices (belt and filter presses, vacuum filters, and driers).  
  Address J.H. Smith III, SEPCO Incorporated, Fort Collins, CO, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Book; Conference-Paper; AMD treatment, it works but are we using the right equipment?; 2263351; Using Smart Source Parsing 00-Proceedings-of-the-7th-international-conference-Fort-Collins-January- 2000 Netherlands; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17541 Serial 237  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: