toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Rabenhorst, M.C.; James, B.R. openurl 
  Title Acid mine drainage remediation via sulfidization in wetlands Fiscal year 1992 annual report Type RPT
  Year 1993 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; anaerobic environment; Appalachians; concentration; decontamination; ferric iron; iron; manganese; marshes; Maryland; metals; mires; North America; oxidation; pollutants; pollution; pore water; remediation; sulfidization; transport; United States; water quality; water treatment; wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor University of Maryland, W.R.R.C.C.P.M.D.U.S. Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage remediation via sulfidization in wetlands Fiscal year 1992 annual report; 1998-034327; GeoRef; English; illus. incl. 1 table University of Maryland, Water Resources Research Center, College Park, MD, United States Approved no  
  Call Number CBU @ c.wolke @ 6684 Serial 267  
Permanent link to this record
 

 
Author (up) Rukin, N. openurl 
  Title Whittle mine water treatment system: In-river attenuation of manganese Type Journal Article
  Year 2003 Publication Land Contam. Reclam. Abbreviated Journal  
  Volume 11 Issue 2 Pages 137-144  
  Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) river water natural attenuation manganese water treatment mine drainage coal mine  
  Abstract Much work has been undertaken on the design of treatment systems to remove iron from ochreous mine water discharges. Unlike iron, manganese removal is far more difficult and generally requires active chemical dosing rather than passive treatment. The need for manganese removal can therefore significantly change the economics, management attention and sustainability of a site. Understanding natural attenuation of manganese in river systems is therefore key to deciding whether (active) manganese treatment is needed to protect downstream receptors. Nuttall (2002, this volume) describes the effectiveness of the passive treatment system at Whittle in reducing both iron and manganese concentrations in ochreous mine waters. This paper discusses the results of in-river monitoring and provides evidence for manganese removal downstream of the discharge point. In addition to dilution, attenuation appears to be in the order of 20 to 50%, depending on relative rates of mine water discharge and river flows. Such attenuation means that active treatment may not be needed for the long-term operation of the Whittle scheme. Operation of the scheme commenced in July 2002, with monitoring to further examine evidence for manganese attenuation and any impact on the ecology of the recipient watercourses.  
  Address N. Rukin, Entec UK Ltd., 160-162 Abbey Foregate, Shrewsbury SY2 6BZ, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0513 ISBN Medium  
  Area Expedition Conference  
  Notes Whittle mine water treatment system: In-river attenuation of manganese; 2530418; United-Kingdom 2; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17521 Serial 257  
Permanent link to this record
 

 
Author (up) Schwartz, M.O.; Ploethner, D. openurl 
  Title From mine water to drinking water; heavy-metal removal by carbonate precipitation in the Grootfontein-Omatako Canal, Namibia Type Book Chapter
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Africa; aluminum; cadmium; canals; carbonates; copper; drinking water; geochemistry; Grootfontein-Omatako Canal; heavy metals; hydrochemistry; iron; lead; manganese; metallogenic provinces; metals; mine drainage; mineral deposits, genesis; mines; Namibia; policy; precipitation; purification; Southern Africa; transport; water management; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Bundesanst. fuer Geowiss. und Rohstoffe Place of Publication Hanover Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes From mine water to drinking water; heavy-metal removal by carbonate precipitation in the Grootfontein-Omatako Canal, Namibia; GeoRef; English; 2002-033925; International congress on Mine, water and environment, Seville, Spain, Sept. 13, 1999 References: 7; 2 tables, sketch maps Approved no  
  Call Number CBU @ c.wolke @ 5929 Serial 250  
Permanent link to this record
 

 
Author (up) Sottnik, P.; Sucha, V. openurl 
  Title Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica Type Journal Article
  Year 2001 Publication Mineralia Slovaca Abbreviated Journal  
  Volume 33 Issue 1 Pages 53-60  
  Keywords acid mine drainage aluminum Banska Stiavnica Slovakia Central Europe copper Eh Europe gangue heavy metals iron manganese metals metamorphic rocks oxidation pH pollution precipitation pyrite quartzites reduction remediation Slovakia Sobov Mine sulfides vegetation waste disposal wetlands 22, Environmental geology  
  Abstract A waste dump formed during the exploitation of quartzite deposit in Sobov mine (Slovakia) produces large quantity of acid mine drainage (AMD) which is mainly a product of pyrite oxidation. Sulphuric acid--the most aggressive oxidation product--attacks gangue minerals, mainly clays, as well. This process lead to a sharp decrease of the pH values (2-2.5) and increase of Fe, Al and SO (super 2-) (sub 4) contents (TDS = 20-30 mg/1). Passive treatment system was designed to remediate AMD. Chemical redox reactions along with microbial activity cause a precipitation of mobile contamination into a more stable forms. The sulphides are formed in the anaerobic cell, under reducing conditions. Fe-, Al- oxyhydroxides are precipitated in the aerobic part of the system. Precipitation decreases the Fe and Al contents along with immobilization of some heavy metal closely related to oxyhydroxides. Besides oxidation, the wetland vegetation is an active part of on aerobic cell. The system has been working effectively since September 1999. The pH values of outflowing water are apparently higher (6.2-6.8) and contents of dissolved elements (Fe from 2.260 to 4.1; Al from 900 to 0.18; Mn from 51 to 23; Cu from 4.95 to 0.03 mg/l) is significantly lowers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0369-2086 ISBN Medium  
  Area Expedition Conference  
  Notes Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica; 2004-084366; References: 21; illus. incl. sects. Slovak Republic (SVK); GeoRef; Slovakian Approved no  
  Call Number CBU @ c.wolke @ 16534 Serial 235  
Permanent link to this record
 

 
Author (up) Stewart, B.R. openurl 
  Title The influence of fly ash additions on acid mine drainage production from coarse coal refuse Type Book Whole
  Year 1996 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; acidic composition; alkalic composition; alkalinity; ash; coal; controls; copper; diffusion; dissolved materials; experimental studies; geologic hazards; hydraulic conductivity; iron; leachate; leaching; manganese; metals; organic residues; oxidation; oxygen; pH; pollutants; pollution; sedimentary rocks; soil treatment; soils; sorption; sulfate ion; waste disposal; water quality 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Virginia Polytechnic Institute and State University, Place of Publication Blacksburg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The influence of fly ash additions on acid mine drainage production from coarse coal refuse; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6351 Serial 230  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: