toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Adam, K. openurl 
  Title Solid wastes management in sulphide mines: From waste characterisation to safe closure of disposal sites Type Journal Article
  Year 2003 Publication Minerals and Energy Raw Materials Report Abbreviated Journal  
  Volume 18 Issue 4 Pages 25-35  
  Keywords Waste Management and Pollution Policy Pollution and waste management non radioactive geographical abstracts: human geography environmental planning (70 11 5) geological abstracts: environmental geology (72 14 2) waste disposal waste management solid waste mining industry acid mine drainage Europe Eurasia  
  Abstract Environmentally compatible Waste Management schemes employed by the European extractive industry for the development of new projects, and applied in operating sulphide mines, are presented in this study. Standard methodologies used to assess the geotechnical and geochemical properties of the solid wastes stemming from mining and processing of sulphidic metal ores are firstly given. Based on waste properties, the measures applied to ensure the environmentally safe recycling and disposal of sulphidic wastes are summarised. Emphasis is given on the novel techniques developed to effectively prevent and mitigate the acid drainage phenomenon from sulphidic mine wastes and tailings. Remediation measures taken to minimise the impact from waste disposal sites in the post-closure period are described.  
  Address (up) K. Adam, ECHMES Ltd, Mikras Asias 40-42, Athens 11527, Greece echmes@otenet.gr  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1404-1049 ISBN Medium  
  Area Expedition Conference  
  Notes Solid wastes management in sulphide mines: From waste characterisation to safe closure of disposal sites; 2582509; Norway 25; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17510 Serial 492  
Permanent link to this record
 

 
Author Carlson, L.; Kumpulainen, S. openurl 
  Title Retention of harmful elements by ochreous precipitates of iron Type Journal Article
  Year 2001 Publication Tutkimusraportti Geologian Tutkimuskeskus Abbreviated Journal  
  Volume - Issue 154 Pages 30-33  
  Keywords Surface water quality Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 9) geological abstracts: environmental geology (72 14 2) iron oxide precipitation chemistry sulfate arsenate heavy metal pH water pollution remediation  
  Abstract The capability of soil fines to fix harmful elements, e.g. heavy metals and arsenic, depends on specific surface area and other characteristics, such as surface charge. In the pH-range typical of natural waters (pH 5,5-7,5), the surfaces of fine-grained silicate particles and manganese oxides are negatively charged; consequently cations, such as heavy metals, fix effectively to them. The iron oxide surfaces are usually positively charged and typically fix anions, such as sulphate and arsenate. Retention of anions is especially extensive to precipitates formed from acid mine drainage (pH 2,5-5,0). For example, precipitates found at Paroistenjarvi mine, Finland, contain more than 70 g/kg of arsenic (dry matter). Adsorbed anions, e.g. sulphate, enhance the capacity of precipitate to fix heavy metal cations in low-pH environments.  
  Address (up) L. Carlson, Tehtaankatu 25 A 4, Helsinki FIN-00150, Finland liisa.carlson@kolumbus.fi  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0781-4240 ISBN Medium  
  Area Expedition Conference  
  Notes Retention of harmful elements by ochreous precipitates of iron; 2392974; Oksidiset rautasaostumat haitallisten aineiden pidattajina. Finland 7; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17533 Serial 421  
Permanent link to this record
 

 
Author Eger, P.; Melchert, G.; Wagner, J. openurl 
  Title Using passive treatment systems for mine closure – A good approach or a risky alternative? Type Journal Article
  Year 2000 Publication Min. Eng. Abbreviated Journal  
  Volume 52 Issue 9 Pages 78-83  
  Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) acid mine drainage decommissioning mine waste open pit mine pH remediation  
  Abstract In 1991, LTV Steel Mining decided to close an open-pit taconite mine in northeastern Minnesota using a passive-treatment approach consisting of limiting infiltration into the stockpiles and wetland treatment to remove metals. More than 50 Mt (55 million st) of sulfide-containing waste had been stockpiled adjacent to the mine during its 30 years of operation. Drainage from the stockpiles contained elevated levels of copper, nickel, cobalt and zinc. Nickel is the major trace metal in the drainages. Before the closure, the annual median concentrations ranged from 1.5 to 50 mg/L. Copper, cobalt and zinc are also present but they are generally less than 5% of the nickel values. Median pH levels range from 5 to 7.5, but most of the stockpile drainages have pH levels greater than 6.5. Based on the chemical composition of each stockpile, a cover material was selected. The higher the potential that a stockpile had to produce acid drainage, the lower the permeability of the capping material required. Covers ranged from overburden soil removed at the mine to a flexible plastic liner. Predictions of the reduction in infiltration ranged from 40% for the native soil to more than 90% for the plastic liner. Five constructed wetlands have been installed since 1992. They have removed 60% to 90% of the nickel in the drainages. Total capital costs for all the infiltration reduction and wetlands exceeded $6.5 million, but maintenance costs are less than 1% of those for an active treatment plant. Because mine-drainage problems can continue for more than 100 years, the lower annual operating costs should pay for the construction of the wetland-treatment systems within seven years.  
  Address (up) P. Eger, Minnesota Dept. of Natural Rsrces., St. Paul, MN, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-5187 ISBN Medium  
  Area Expedition Conference  
  Notes Using passive treatment systems for mine closure – A good approach or a risky alternative?; 2285715; United-States 19; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17539 Serial 392  
Permanent link to this record
 

 
Author Coulton, R.; Bullen, C.; Hallett, C. url  openurl
  Title The design and optimisation of active mine water treatment plants Type Journal Article
  Year 2003 Publication Land Contam. Reclam. Abbreviated Journal  
  Volume 11 Issue 2 Pages 273-280  
  Keywords sludge mine water treatment mine water active treatment precipitation iron manganese high density sludge sulphide Groundwater problems and environmental effects Pollution and waste management non radioactive manganese sulfide pollutant removal iron water treatment mine drainage  
  Abstract This paper provides a 'state of the art' overview of active mine water treatment. The paper discusses the process and reagent selection options commonly available to the designer of an active mine water treatment plant. Comparisons are made between each of these options, based on technical and financial criteria. The various different treatment technologies available are reviewed and comparisons made between conventional precipitation (using hydroxides, sulphides and carbonates), high density sludge processes and super-saturation precipitation. The selection of reagents (quick lime, slaked lime, sodium hydroxide, sodium carbonate, magnesium hydroxide, and proprietary chemicals) is considered and a comparison made on the basis of reagent cost, ease of use, final effluent quality and sludge settling criteria. The choice of oxidising agent (air, pure oxygen, peroxide, etc.) for conversion of ferrous to ferric iron is also considered. Whole life costs comparisons (capital, operational and decommissioning) are made between conventional hydroxide precipitation and the high density sludge process, based on the actual treatment requirements for four different mine waters.  
  Address (up) R. Coulton, Unipure Europe Ltd., Wonastow Road, Monmouth NP25 5JA, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0513 ISBN Medium  
  Area Expedition Conference  
  Notes The design and optimisation of active mine water treatment plants; 2530436; United-Kingdom 4; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17513 Serial 59  
Permanent link to this record
 

 
Author Banks, S.B. openurl 
  Title The Coal Authority Minewater Treatment Programme: An update on the performance of operational schemes Type Journal Article
  Year 2003 Publication Land Contam. Reclam. Abbreviated Journal  
  Volume 11 Issue 2 Pages 161-164  
  Keywords Wetlands and estuaries Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 8) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) constructed wetland mine drainage water treatment pollutant removal United Kingdom  
  Abstract The performance of mine water treatment schemes, operated under the Coal Authority's national Minewater Treatment Programme, is summarised. Most schemes for which data are available perform successfully and remove over 90% iron. Mean area-adjusted iron removal rates for reedbed components of treatment schemes, range from 1.5 to 5.5 g Fe/m2, with percentage iron removal rates ranging from 68% to 99%. In the majority of cases, calculated area-adjusted removal rates are limited by influent iron loadings, and the empirical sizing criterion for aerobic wetlands, based on American removal rates of 10 g Fe/m2day, remains a valuable tool in the initial stages of treatment system design and estimation of land area requirements. Where a number of schemes have required modification after becoming operational, due consideration must always be given to the potential for dramatic increases in influent iron loadings, and to how the balance between performance efficiency and aesthetic appearance can best be achieved. Continual review and feedback on the performance of treatment systems, and the problems encountered during design implementation, will enhance the efficiency and effectiveness of the Minewater Treatment Programme within the UK.  
  Address (up) S.B. Banks, Scott Wilson Kirkpatrick/Co. Ltd., Rose Hill West, Chesterfield S40 1JF, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0513 ISBN Medium  
  Area Expedition Conference  
  Notes The Coal Authority Minewater Treatment Programme: An update on the performance of operational schemes; 2530421; United-Kingdom 4; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17519 Serial 467  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: