toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Stewart, D.; Norman, T.; Cordery-Cotter, S.; Kleiner, R.; Sweeney, E.; Nelson, J.D. url  openurl
  Title Utilization of a ceramic membrane for acid mine drainage treatment Type Journal Article
  Year (up) 1997 Publication Tailings and Mine Waste '97 Abbreviated Journal  
  Volume Issue Pages 453-460  
  Keywords acid mine drainage; Black Hawk Colorado; Central City Colorado; ceramic materials; Colorado; cost; disposal barriers; geochemistry; Gilpin County Colorado; heavy metals; mines; organic compounds; pollution; remediation; surface water; tailings; United States; utilization; volatile organic compounds; volatiles; waste disposal mine water treatment  
  Abstract BASX Systems LLC has developed a treatment system based on ceramic membranes for the removal of heavy metals from an acid mine drainage stream. This stream also contained volatile organic compounds that were required to be removed prior to discharge to a Colorado mountain stream. The removal of heavy metals was greater than 99% in most cases. A decrease of 30% in chemicals required for treatment and a reduction by more than 75% in labor over a competing technology were achieved. These decreases were obtained for operating temperatures of less than 5 degrees C. This system of ceramic microfiltration is capable of treating many different types of acid mine waste streams for heavy metals removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 90-5410-857-6 ISBN Medium  
  Area Expedition Conference  
  Notes Jan 13-17; Utilization of a ceramic membrane for acid mine drainage treatment; Isip:A1997bg96u00050; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8744 Serial 135  
Permanent link to this record
 

 
Author Benkovics, I.; Csicsák, J.; Csövári, M.; Lendvai, Z.; Molnár, J. openurl 
  Title Mine Water Treatment – Anion-exchange and Membrane Process Type Journal Article
  Year (up) 1997 Publication Proceedings, 6th International Mine Water Association Congress, Bled, Slovenia Abbreviated Journal  
  Volume 1 Issue Pages 149-157  
  Keywords uranium mining Hungary Mecsek Ore Mining Company waste water mine water chemistry nano-filtration reverse osmosis pilot plant mine water treatment treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Mine Water Treatment – Anion-exchange and Membrane Process; 1; FG 6 Abb., 2 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9530 Serial 455  
Permanent link to this record
 

 
Author Kuyucak, N. url  openurl
  Title Mining, the Environment and the Treatment of Mine Effluents Type Journal Article
  Year (up) 1998 Publication Int. J. Environ. Pollut. Abbreviated Journal  
  Volume 10 Issue 2 Pages 315-325  
  Keywords mine water treatment acid mine drainage high density sludge lime neutralization mining environment passive treatment sulfate-reducing bacteria  
  Abstract The environmental impact of mining on the ecosystem, including land, water and air, has become an unavoidable reality. Guidelines and regulations have been promulgated to protect the environment throughout mining activities from start-up to site decommissioning. In particular, the occurrence of acid mine drainage (AMD), due to oxidation of sulfide mineral wastes, has become the major area of concern to many mining industries during operations and after site decommissioning. AMD is characterized by high acidity and a high concentration of sulfates and dissolved metals. If it cannot be prevented or controlled, it must be treated to eliminate acidity, and reduce heavy metals and suspended solids before release to the environment. This paper discusses conventional and new methods used for the treatment of mine effluents, in particular the treatment of AMD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4352 ISBN Medium  
  Area Expedition Conference  
  Notes Mining, the Environment and the Treatment of Mine Effluents; Isi:000078420600009; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17477 Serial 56  
Permanent link to this record
 

 
Author Wiessner, A. url  openurl
  Title The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke Type Journal Article
  Year (up) 1998 Publication Colloids and Surfaces a-Physicochemical and Engineering Aspects Abbreviated Journal  
  Volume 139 Issue 1 Pages 91-97  
  Keywords mine water treatment  
  Abstract To study the functions of activated carbon and activated coke adsorption for the treatment of highly contaminated discolored industrial wastewater with a wide molecular size distribution of organic compounds, the deposited lignite pyrolysis wastewater from a filled open-cast coal mine was used for continuous and discontinuous experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke; Wos:000074411100012; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17147 Serial 133  
Permanent link to this record
 

 
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Puls, R.W. url  openurl
  Title Treatment of dissolved metals using permeable reactive barriers Type Journal Article
  Year (up) 1998 Publication Groundwater Quality: Remediation and Protection Abbreviated Journal  
  Volume Issue 250 Pages 483-490  
  Keywords adsorption; aquifers; attenuation; dissolved materials; metals; nutrients; oxidation; pollutants; pollution; precipitation; reduction; water treatment Groundwater quality Pollution and waste management non radioactive Groundwater acid mine drainage aquifer pollution conference proceedings containment barrier metal tailings Canada Ontario Nickel Rim Mine United States North Carolina Elizabeth City mine water treatment  
  Abstract Permeable reactive barriers are a promising new approach to the treatment of dissolved contaminants in aquifers. This technology has progressed rapidly from laboratory studies to full-scale implementation over the past decade. Laboratory treatability studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4, and SO4. Small scale field studies have indicated the potential for treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4, and SO4. Permeable reactive barriers have been used in full-scale installations for the treatment of hexavalent chromium, dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn, and dissolved nutrients, including nitrate and phosphate. A full-scale barrier designed to prevent the release of contaminants associated with inactive mine tailings impoundment was installed at the Nickel Rim mine site in Canada in August 1995. This reactive barrier removes Fe, SO,, Ni and other metals. The effluent from the barrier is neutral in pH and contains no acid-generating potential, and dissolved metal concentrations are below regulatory guidelines. A full-scale reactive barrier was installed to treat Cr(VI) and halogenated hydrocarbons at the US Coast Guard site in Elizabeth City, North Carolina, USA in June 1996. This barrier removes Cr(VI) from >8 mg l(-1) to <0.01 mg l(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0144-7815 ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of dissolved metals using permeable reactive barriers; Isip:000079718200072; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8601 Serial 178  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: