toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Scholz, M. url  openurl
  Title Mature experimental constructed wetlands treating urban water receiving high metal loads Type Journal Article
  Year 2002 Publication Biotechnology Progress Abbreviated Journal  
  Volume (down) 18 Issue 6 Pages 1257-1264  
  Keywords mine water treatment  
  Abstract The aim was to assess over 2 years the treatment efficiencies of vertical-flow wetland filters containing macrophytes and granular media of different. adsorption capacities. Different concentrations of lead and copper sulfate (constant for 1 year each) were added to urban beck inflow water in order to simulate pretreated (pH adjustment assumed) mine wastewater. After 1 year of operation, the inflow concentrations for lead and copper were increased from 1.30 to 2.98 and from 0.98 to 1.93 mg/L, respectively. However, the metal mass load rates (mg/m(2)/d) were increased by a factor of approximately 4.9 for lead and 4.3 for copper. No breakthrough of metals was recorded. Lead and copper accumulated in the biomass of the litter zone and rhizomes of the macrophytes. Furthermore, microbiological activity decreased during the second year of operation. Bioindicators such as ciliated protozoa and zooplankton decreased sharply in numbers but diatoms increased. In conclusion, the use of macrophytes and, adsorption media did not significantly enhance the filtration of lead and copper. Particulate lead is removed by filtration processes including straining. Furthermore, some expensive and time-consuming water quality variables can be predicted with less expensive ones such as temperature in order to reduce sampling costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Mature experimental constructed wetlands treating urban water receiving high metal loads; Wos:000179760000018; Times Cited: 11; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17032 Serial 119  
Permanent link to this record
 

 
Author Banks, S.B. url  openurl
  Title The UK coal authority minewater-treatment scheme programme: Performance of operational systems Type Journal Article
  Year 2003 Publication Jciwem Abbreviated Journal  
  Volume (down) 17 Issue 2 Pages 117-122  
  Keywords mine water treatment  
  Abstract This paper summarises the performance of minewater-treatment schemes which are operated under the Coal Authority's National Minewater Treatment Programme. Commonly-used design criteria and performance indicators are briefly discussed, and the performance of wetland systems which are operated by the Coal Authority is reviewed. Most schemes for which data are available remove more than 90% iron, and average area-adjusted iron-removal rates range from 1.5 to 5.5 g Fe/m(2). d. These values, which are based on performance calculations, can be distorted by several factors, including the practice of maximising wetland areas to make best use of available land. Removal rates are limited by influent iron loadings, and area-adjusted iron-removal rates should be used with caution when assessing wetland performance. Sizing criteria for all types of treatment system might be refined if more detailed data become available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-7359 ISBN Medium  
  Area Expedition Conference  
  Notes May; The UK coal authority minewater-treatment scheme programme: Performance of operational systems; Wos:000183641000009; Times Cited: 1; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10018.pdf; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17457 Serial 9  
Permanent link to this record
 

 
Author Evangelou, V.P. url  openurl
  Title Pyrite microencapsulation technologies: Principles and potential field application Type Journal Article
  Year 2001 Publication Ecological Engineering Abbreviated Journal  
  Volume (down) 17 Issue 2-3 Pages 165-178  
  Keywords mine water treatment Acid mine drainage Acidity Alkalinity Amelioration Coating Oxidation Surface reactions  
  Abstract In nature, pyrite is initially oxidized by atmospheric O2, releasing acidity and Fe2+. At pH below 3.5, Fe2+ is rapidly oxidized by T. ferrooxidans to Fe3+, which oxidizes pyrite at a much faster rate than O2. Commonly, limestone is used to prevent pyrite oxidation. This approach, however, has a short span of effectiveness because after treatment the surfaces of pyrite particles remain exposed to atmospheric O2 and oxidation continuous abiotically. Currently, a proposed mechanism for explaining non-microbial pyrite oxidation in high pH environments is the involvement of OH- in an inner-sphere electron-OH exchange between pyrite/surface-exposed disulfide and pyrite/surface-Fe(III)(OH)n3-n complex and/or formation of a weak electrostatic pyrite/surface-CO3 complex which enhances the chemical oxidation of Fe2+. The above infer that limestone application to pyritic geologic material treats only the symptoms of pyrite oxidation through acid mine drainage neutralization but accelerates non-microbial pyrite oxidation. Therefore, only a pyrite/surface coating capable of inhibiting O2 diffusion is expected to control long-term oxidation and acid drainage production. The objective of this study was to examine the feasibility in controlling pyrite oxidation by creating, on pyrite surfaces, an impermeable phosphate or silica coating that would prevent either O2 or Fe3+ from further oxidizing pyrite. The mechanism underlying this coating approach involves leaching mine waste with a coating solution composed of H2O2 or hypochlorite, KH2PO4 or H4SiO4, and sodium acetate (NaAC) or limestone. During the leaching process, H2O2 or hypochlorite oxidizes pyrite and produces Fe3+ so that iron phosphate or iron silicate precipitates as a coating on pyrite surfaces. The purpose of NaAC or limestone is to eliminate the inhibitory effect of the protons (produced during pyrite oxidation) on the precipitation of iron phosphate or silicate and to generate iron-oxide pyrite coating, which is also expected to inhibit pyrite oxidation. The results showed that iron phosphate or silicate coating could be established on pyrite by leaching it with a solution composed of: (1) H2O2 0.018-0.16 M; (2) phosphate or silicate 10-3 to 10-2 M; (3) coating-solution pH [approximate]5-6; and (4) NaAC as low as 0.01 M. Leachates from column experiments also showed that silicate coatings produced the least amount of sulfate relative to the control, limestone and phosphate treatments. On the other hand, limestone maintained the leachate near neutral pH but produced more sulfate than the control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8574 ISBN Medium  
  Area Expedition Conference  
  Notes July 01; Pyrite microencapsulation technologies: Principles and potential field application; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10063.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 10063 Serial 37  
Permanent link to this record
 

 
Author Goulet, R.R. url  openurl
  Title Changes in dissolved and total Fe and Mn in a young constructed wetland: Implications for retention performance Type Journal Article
  Year 2001 Publication Ecological Engineering Abbreviated Journal  
  Volume (down) 17 Issue 4 Pages 373-384  
  Keywords mine water treatment  
  Abstract Surface-flow wetlands are generally considered sinks for Fe and Mn but they may also export and affect the partitioning of these metals. This study was undertaken to evaluate the effect of a young constructed wetland on the retention and transformation of both dissolved and particulate Fe and Mn. Duplicate water samples were collected every three days at the inlet and outlet structures of the Monahan Wetland, Kanata, Ontario, from spring of 1997 to 1999. While on a yearly basis the wetland showed significant retention of che dissolved phase, the retention of total Fe and Mn was poor. There were strong seasonal differences in retention and, during the winter, the wetland was a source. The wetland transformed dissolved into particulate Fe and Mn from spring to fall whereas during the winter, dissolved Fe and Mn were released. Changes in pH, alkalinity and temperature could explain 11% and 40% of the outlet variation in the ratio of dissolved to total Fe and Mn respectively. Furthermore, from spring to late summer, planktonic algal biomass was negatively related to the ratio of dissolved to total Fe and Mn implying a role in Fe and Mn transformations in young wetlands where emergent and submerged vegetation have yet to dominate the system. (C) 2001 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Changes in dissolved and total Fe and Mn in a young constructed wetland: Implications for retention performance; Wos:000169881900004; Times Cited: 5; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17050 Serial 124  
Permanent link to this record
 

 
Author Bosman, D.J. url  openurl
  Title Lime Treatment Of Acid-Mine Water And Associated Solids Liquid Separation Type Journal Article
  Year 1983 Publication Water Sci. Technol. Abbreviated Journal  
  Volume (down) 15 Issue 2 Pages 71-84  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Lime Treatment Of Acid-Mine Water And Associated Solids Liquid Separation; Wos:A1983qg97300005; Times Cited: 7; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 14794 Serial 95  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: