toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Whitehead, P.G. url  openurl
  Title Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project Type Journal Article
  Year 2005 Publication Science of the Total Environment Abbreviated Journal  
  Volume (down) 338 Issue 1-2 Pages 15-21  
  Keywords mine water treatment  
  Abstract Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheat Jane Mine in Cornwall, UK. The plant consists of three separate systems; each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pre-treatment utilised to increase the pH of the influent minewater (pH<4): lime-dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pre-treatment. The Wheal Jane pilot plant offered a unique facility and a major research project was established to evaluate the pilot plant and study in detail the biological mechanisms and the geochemical and physical processes that control passive treatment systems. The project has led to data, knowledge, models and design criteria for the future design, planning and sustainable management of passive treatment systems. A multidisciplinary team of scientists and managers from the U.K. universities, the Environment Agency and the Mining Industry has been put together to obtain the maximum advantage from the excellent facilities facility at Wheal Jane. (C) 2004 Elseaier B.V All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project; Wos:000227130400003; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16972 Serial 116  
Permanent link to this record
 

 
Author Angelos, M.A.F. url  openurl
  Title Rehabilitation options for a Finnish copper mine Type Journal Article
  Year 2000 Publication International Conference on Practical Applications in Environmental Geotechnology Ecogeo 2000 Abbreviated Journal  
  Volume (down) 204 Issue Pages 207-214  
  Keywords mine water treatment  
  Abstract The Luikonlahti Copper mine is located near the town of Kaavi in eastern Finland, approximately 30 km northwest of Outokumpu. The copper sulphide ore deposit formed the northern most part of the Outokumpu assemblage. During 15 years of operation, between 1968 and 1983, a total of 33 km of underground tunnels and 5.5 km of underground shafts were excavated in the mining of 6.85 million metric tons of ore. The underground working are now flooded with 2 million m(3) of contaminated water and three open pits contain over 1 million m(3) of contaminated water. Five separate waste rock piles exist and are actively forming acid mine drainage (AMD).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Rehabilitation options for a Finnish copper mine; Isip:000165636600026; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17620 Serial 171  
Permanent link to this record
 

 
Author url  openurl
  Title Selecting Mine Drainage Treatment Systems Type Journal Article
  Year 1995 Publication E&Mj-Engineering and Mining Journal Abbreviated Journal  
  Volume (down) 196 Issue 10 Pages Rr24-&  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Selecting Mine Drainage Treatment Systems; Wos:A1995ta62400001; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8900 Serial 87  
Permanent link to this record
 

 
Author Chen, M.; Li, L.; Grace, J.; Tazaki, K.; Shiraki, K.; Asada, R.; Watanabe, H. url  openurl
  Title Remediation of acid rock drainage by regenerable natural clinoptilolite Type Journal Article
  Year 2007 Publication Water, Air, Soil Pollut. Abbreviated Journal  
  Volume (down) 180 Issue 1-4 Pages 11-27  
  Keywords mine water treatment  
  Abstract Clinoptilolite is investigated as a possible regenerable sorbent for acid rock drainage based on its adsorption capacity for Zn, adsorption kinetics, effect of pH, and regeneration performance. Adsorption of Zn ions depends on the initial concentration and pH. Adsorption/Desorption of Zn reached 75% of capacity after 1-2 h. Desorption depended on pH, with an optimum range of 2.5 to 4.0. The rank of desorption effectiveness was EDTAEDTA > NaCl > NaNO3 > NaOAc > NaHCO3 > Na2CO3 > NaOH > CeCa(OH)(2). For cyclic absorption/desorption, adsorption remained satisfactory for six to nine regenerations with EDTA and NaCl, respectively. The crystallinity and morphology of clinoptilolite remained intact following 10 regeneration cycles. Clinoptilolite appears to be promising for ARD leachate treatment, with significant potential advantages relative to current treatment systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-6979 ISBN Medium  
  Area Expedition Conference  
  Notes Mar; Remediation of acid rock drainage by regenerable natural clinoptilolite; Wos:000244030000003; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 7319 Serial 17  
Permanent link to this record
 

 
Author Al, T.A. url  openurl
  Title Storm-water hydrograph separation of run off from a mine-tailings impoundment formed by thickened tailings discharge at Kidd Creek, Timmins, Ontario Type Journal Article
  Year 1996 Publication Journal of Hydrology Abbreviated Journal  
  Volume (down) 180 Issue 1-4 Pages 55-78  
  Keywords mine water treatment  
  Abstract The Kidd Creek Cu-Zn sulphide mine is located near Timmins, Ontario. Mill tailings are thickened and deposited as a thickened slurry in a circular, conical-shaped pile with an area of approximately 1200 ha. Deposition of tailings as a thickened slurry results in a relatively uniform grain-size distribution and hydraulic conductivity, and a thick tension-saturated zone above the water table. The tailings are drained by numerous small, ephemeral stream channels, which have developed in a radial pattern. During storms, water from these streams collects in catchment ponds where it is held before treatment. The contribution of tailings pore water to the run off is of interest because of the potential for discharge of pore water containing high concentrations of Fe(II)-acidity, metals and SO4 to the stream. Hydraulic head measurements, measurements of water-table elevation and groundwater how modelling were conducted to determine the mechanisms responsible for tailings pore water entering the surface streams. Chemical hydrograph separation of storm run off in one of these streams, during three rainfall events, using Na and Cl as conservative tracers, indicates that the integrated tailings pore water fraction makes up between less than 1% and 20% of the total hydrograph. This range is less than the maximum fraction of tailings pore water of 22-65% reported for run off from a conventional tailings deposit. At this site, preferential flow through permeable fractures may be the dominant mechanism causing discharge of tailings pore water to storm run off. Estimates of the mass of Fe(II) that discharges to the surface run off from the pore water range up to 2800 mg s(-1) during a moderate intensity, long duration rainfall event. The greatest potential for discharge of significant masses of solutes derived from the pore water exists during long duration rainfall events, when the water table rises to the surface over large areas of the tailings impoundment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Storm-water hydrograph separation of run off from a mine-tailings impoundment formed by thickened tailings discharge at Kidd Creek, Timmins, Ontario; Wos:A1996up76700004; Times Cited: 7; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17162 Serial 85  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: