toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wolkersdorfer, C. openurl 
  Title Type (up) Book Whole
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages 348 pp  
  Keywords mine water stratification prediction tracer tests HABIL  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher unpubl. Habilitation Thesis TU Bergakademie Freiberg Place of Publication Freiberg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Water Management at Abandoned Flooded Underground Mines – Fundamentals – Tracer Tests – Modelling – Water Treatment Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Water Management at Abandoned Flooded Underground Mines – Fundamentals – Tracer Tests – Modelling – Water Treatment; 1; AMD ISI | Wolkersdorfer; FG 123 Abb., 34 Tab. Approved no  
  Call Number CBU @ c.wolke @ 17445 Serial 204  
Permanent link to this record
 

 
Author Waring, C.L.; Taylor, J.R. openurl 
  Title Type (up) Book Whole
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages 663-665  
  Keywords in-situ mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.  
  Language Summary Language Original Title  
  Series Editor Series Title Mine, Water & Environment Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes A new technique for building in-situ sub-surface hydrologic barriers: NBT; 1; AMD ISI | Wolkersdorfer; 3 Abb., 1 Tab. Approved no  
  Call Number CBU @ c.wolke @ 9947 Serial 218  
Permanent link to this record
 

 
Author Walton-Day, K. isbn  openurl
  Title Type (up) Book Whole
  Year 2003 Publication Abbreviated Journal  
  Volume Issue Pages 335-359  
  Keywords passive treatment active treatment mine water acid mine drainage  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Mineralogical Association of Canada Place of Publication 31 Editor Raeside, R.  
  Language Summary Language Original Title  
  Series Editor Series Title Short Course Series Volume Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-921294-31-X Medium  
  Area Expedition Conference  
  Notes Passive and active treatment of mine drainage; 4; AMD ISI | Wolkersdorfer; TUBAFG 04.399 8 Abb. Approved no  
  Call Number CBU @ c.wolke @ 9944 Serial 219  
Permanent link to this record
 

 
Author Skousen, J.G.; Rose, A.; Geidel, G.; Foreman, J.; Evans, R.; Hellier, W. openurl 
  Title Type (up) Book Whole
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages 130 pp  
  Keywords acid mine drainage mine water remediation  
  Abstract An array of techniques have been developed during the last several decades to abate or control pollution by acid mine drainage (AMD) from coal and metal mines. Although most of these techniques are successful in eliminating or decreasing the deleterious effects of AMD in some situations, they are unsuccessful in others. Due to the inherent variability between mines and environmental conditions, no one abatement or treatment technique is effective on all sites, and selection of the best method on each site is difficult given the array of methods available. The techniques also vary in the type and size of problem they are capable of handling. Their individual costs, effectiveness, and maintenance are also important considerations. Therefore, accurate information is needed to understand the limitations of the various methods and their response to various site variables. Continued research is imperative for field testing of existing technologies, as well as continued development of new technologies. At present, there is no authoritative guide or manual to assist in evaluating the best technique for a given situation. In order to continue to mine coal and other minerals without harming the environment, the best science and techniques must be identified and implemented in order to minimize the production of AMD. To accomplish this goal, the Acid Mine Drainage Technology Initiative (ADTI) was organized to promote communication among scientists and engineers dealing with AMD, and to develop a consensus on the identification and optimum usage of each method. The intent is to provide information on selection of appropriate techniques for specific problems that will ultimately lead to a higher level of success in avoidance of AMD and remediation of existing sources, at a savings in cost and staff time, and with greater assurance that a planned technique will accomplish its objective. This effort will result in enhancement of mine drainage quality, improvement in stream cleanup and its cost effectiveness, and development of a mechanism for technology transfer.  
  Address  
  Corporate Author Thesis  
  Publisher The National Mine Land Reclamation Center Place of Publication Morgantown Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Handbook of Technologies for Avoidance and Remediation of Acid Mine Drainage Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Handbook of Technologies for Avoidance and Remediation of Acid Mine Drainage; 2; VORHANDEN | AMD ISI | Wolkersdorfer; FG als Datei vorhanden 3 Abb. Approved no  
  Call Number CBU @ c.wolke @ 17424 Serial 243  
Permanent link to this record
 

 
Author Sapsford, D.; Barnes, A.; Dey, M.; Williams, K.; Jarvis, A.; Younger, P. isbn  openurl
  Title Type (up) Book Whole
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages 261-265  
  Keywords passive treatment iron mine water  
  Abstract This paper presents iron removal data from a novel low footprint mine water treatment system. The paper discusses possible design configurations and demonstrates that the system could treat 1 L/s of mine water containing 8.4 mg/L of iron to < 1 mg/L with a system footprint of 66 m2. A conventional lagoon and aerobic wetland system would require at least 160 m2 to achieve the same treatment. Other advantages of the system are that it produces a clean and dense sludge amenable to on-site storage and possible recycling and that heavy plant will generally not be required for construction.  
  Address  
  Corporate Author Thesis  
  Publisher Mako Edizioni Place of Publication Cagliari Editor Cidu, R.; Frau, F.  
  Language Summary Language Original Title  
  Series Editor Series Title Water in Mining Environments Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-88-902955-0-8 Medium  
  Area Expedition Conference  
  Notes Low Footprint Mine Water Treatment: Field Demonstration and Application; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 2 Abb., 2 Tab. Approved no  
  Call Number CBU @ c.wolke @ 17416 Serial 255  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: