toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cram, J.C. openurl 
  Title Diversion well treatment of acid water, Lick Creek, Tioga County, PA Type (up) Book Whole
  Year 1996 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage acid rain atmospheric precipitation carbonate rocks diversion wells Lick Creek limestone Pennsylvania pH pollution rain sedimentary rocks surface water Tioga County Pennsylvania United States water quality water treatment wells 22, Environmental geology  
  Abstract Diversion wells implement a fluidized bed of limestone for the treatment of acid water resulting from acid mine drainage or acid precipitation. This study was undertaken to better understand the operation of diversion wells and to define the physical and chemical factors having the greatest impact on the neutralization performance of the system. The study site was located near Lick Creek, a tributary stream of Babb Creek, near the Village of Arnot in Tioga County, Pennsylvania. Investigative methods included collection and analysis of site water quality and limestone data and field study of this as well as other diversion well sites. Analysis of data led to these general conclusions: The site received surface water influenced by three primary sources 1) precipitation, 2) mine drainage baseflow, and 3) melted snow. Water mostly influenced by precipitation events and mine drainage baseflow was more acidic than water influenced by melting snow conditions. The diversion wells were generally able to treat only half or less of the total stream flow of Lick Creek and under extremely high flow conditions the treatment provided was minimal. A range of flow conditions were identified which produced the best performance for the two diversion wells. Treatment produced by the system decreased through the loading cycle and increases to a maximum value after each weekly refilling of limestone. Fine grained sediment in the stream was found to be limestone of the same general composition as the material placed within the wells. Neutralization of acid water was largely due to microscopic particles rather than the limestone sediment discharged to the stream. Additional downstream buffering due to the limestone sediment physically discharged from the vessels was not apparent. Diversion well systems are inexpensive and simple to construct. In addition, the systems were found to be highly reliable and able to effectively treat acid water resulting from mine drainage and acid precipitation. Diversion wells provide better treatment when the treatment site is located at the source of the acidity (such as a mine discharge), rather than at the receiving stream. Systems should be designed with 15 to 20 feet of hydraulic head and the site must have year-round access. Diversion well systems require weekly addition of limestone gravel to the vessels to facilitate continual treatment. A great deal of commitment is necessary to maintain a diversion well system for long periods of time. These systems are more economical and require less attention that conventional chemical treatment of acid water. However, these systems require more attention that traditional passive treatment methods for treatment of acid, including mine drainage.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Pennsylvania State University at University Park, Place of Publication University Park Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Diversion well treatment of acid water, Lick Creek, Tioga County, PA; GeoRef; English; References: 49; illus. Approved no  
  Call Number CBU @ c.wolke @ 16652 Serial 411  
Permanent link to this record
 

 
Author Dempsey, B.A.; Jeon, B.-H. url  openurl
  Title Characteristics of sludge produced from passive treatment of mine drainage Type (up) Journal Article
  Year 2001 Publication Geochem.-Explor. Environ. Anal. Abbreviated Journal  
  Volume 1 Issue 1 Pages 89-94  
  Keywords acid mine drainage; aerobic environment; anaerobic environment; Appalachian Plateau; Appalachians; carbonate rocks; coagulation; compressibility; decontamination; density; drainage; filtration; geochemistry; Howe Bridge; Jefferson County Pennsylvania; limestone; mining geology; North America; passive systems; Pennsylvania; pH; pollution; ponds; rates; reclamation; sedimentary rocks; settling; sludge; slurries; suspended materials; United States; viscosity; wet packing density; wetlands; zeta-potential 22, Environmental geology  
  Abstract In the 1994 paper by Brown, Skousen & Renton it was argued that settleability and wet-packing density were the most important physical characteristics of sludge from treatment of mine drainage. These characteristics plus zeta-potential, intrinsic viscosity, specific resistance to filtration, and coefficient of compressibility were determined for several sludge samples from passive treatment sites and for several sludge samples that were prepared in the laboratory. Sludge from passive systems had high packing density, low intrinsic viscosity, low specific resistance to filtration and low coefficient of compressibility compared to sludge that was produced after addition of NaOH.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1467-7873 ISBN Medium  
  Area Expedition Conference  
  Notes Feb.; Characteristics of sludge produced from passive treatment of mine drainage; 2002-008382; References: 29; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5734 Serial 57  
Permanent link to this record
 

 
Author Demchak, J.; Morrow, T.; Skousen, J.; Donovan, J.J.; Rose, A.W. url  openurl
  Title Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites Type (up) Journal Article
  Year 2001 Publication Geochemistry – Exploration, Environment, Analysis Abbreviated Journal  
  Volume 1 Issue 1 Pages 71-80  
  Keywords acid mine drainage alkalinity anaerobic environment Appalachian Plateau Appalachians carbonate rocks Clearfield County Pennsylvania constructed wetlands Eh equilibrium Filson Wetlands ground water Howe Bridge Wetlands hydrology Jefferson County Pennsylvania limestone McKinley Wetlands Mill Creek watershed Moose Creek movement North America passive methods Pennsylvania pH pollution reclamation sedimentary rocks Sommerville Wetlands systems United States water treatment watersheds wetlands 22 Environmental geology 02B Hydrochemistry  
  Abstract Acid mine drainage (AMD) is a serious problem in many watersheds where coal is mined. Passive treatments, such as wetlands and anoxic limestone drains (ALDs), have been developed, but these technologies show varying treatment efficiencies. A new passive treatment technique is a vertical flow wetland or successive alkalinity producing system (SAPS). Four SAPS in Pennsylvania were studied to determine changes in water chemistry from inflow to outflow. The Howe Bridge SAPS removed about 130 mg l (super -1) (40%) of the inflow acidity concentration and about 100 mg l (super -1) (60%) iron (Fe). The Filson 1 SAPS removed 68 mg l (super -1) (26%) acidity, 20 mg l (super -1) (83%) Fe and 6 mg l (super -1) (35%) aluminium (Al). The Sommerville SAPS removed 112 mg l (super -1) (31%) acidity, exported Fe, and removed 13 mg l (super -1) (30%) Al. The McKinley SAPS removed 54 mg l (super -1) (91%) acidity and 5 mg l (super -1) (90%) Fe. Acid removal rates at our four sites were 17 (HB), 52 (Filson1), 18 (Sommerville) and 11 (McKinley) g of acid per m (super 2) of surface wetland area per day (g/m (super 2) d (super -1) ). Calcium (Ca) concentrations in the SAPS effluents were increased between 8 and 57 mg l (super -1) at these sites. Equilibrators, which were inserted into compost layers to evaluate redox conditions at our sites, showed that reducing conditions were generally found at 60 cm compost depths and oxidized conditions were found at 30 cm compost depths. Deeply oxidized zones substantiated observations that channel flow was occurring through some parts of the compost. The Howe Bridge site has not declined in treatment efficiency over a six year treatment life. The SAPS construction costs were equal to about seven years of NaOH chemical treatment costs and 30 years of lime treatment costs. So, if the SAPS treatment longevity is seven years or greater and comparable effluent water quality was achieved, the SAPS construction was cost effective compared to NaOH chemical treatment. Construction recommendations for SAPS include a minimum of 50 cm of compost thickness, periodic replacement or addition of fresh compost material, and increasing the number of drainage pipes underlying the limestone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1467-7873 ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites; 2002-008380; References: 15; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 16518 Serial 58  
Permanent link to this record
 

 
Author Ziemkiewicz, P.; Skousen, J.; Simmons, J. openurl 
  Title Cost benefit analysis of passive treatment systems Type (up) Journal Article
  Year 2001 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; acidification; Augusta coal field; Big Bear Lake; carbonate rocks; coal mines; cost; dams; drainage basins; economics; ferric iron; Indiana; iron; limestone; metals; mines; optimization; oxidation; Pike County Indiana; pollution; Preston County West Virginia; pyrite; sedimentary rocks; South Fork Patoka River; spoils; sulfate ion; sulfides; surface water; United States; water pollution; water quality; water resources; water treatment; West Virginia 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher West Virginia Surface Mine Drainage Task Force Symposium Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings, 22nd West Virginia surface mine drainage task force symposium Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 2002-047125; Twenty-second West Virginia surface mine drainage task force symposium, Morgantown, WV, United States, April 3-4, 2001 References: 7; illus. incl. 9 tables; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5766 Serial 191  
Permanent link to this record
 

 
Author Taylor, J.; Waters, J. openurl 
  Title Treating ARD; how, when, where and why Type (up) Journal Article
  Year 2003 Publication Mining Environmental Management Abbreviated Journal  
  Volume 11 Issue 3 Pages 6-9  
  Keywords acid mine drainage; acid rock drainage; acidification; alkalinity; carbonate rocks; chemical properties; chemical reactions; coal; disposal barriers; economics; flocculation; ground water; heavy metals; human activity; ion exchange; limestone; mines; oxidation; oxides; permeability; pollution; porosity; pyrolusite; remediation; sedimentary rocks; surface water; waste disposal; waste management; water pollution; water treatment; wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-4218 ISBN Medium  
  Area Expedition Conference  
  Notes Treating ARD; how, when, where and why; 2004-045038; References: 8; illus. incl. 2 tables United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5528 Serial 225  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: