toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Juby, G.J.G.; Schutte, C.F. url  openurl
  Title (up) Membrane Life in a Seeded-slurry Reverse Osmosis System Type Journal Article
  Year 2000 Publication Water Sa Abbreviated Journal  
  Volume 26 Issue 2 Pages 239-248  
  Keywords mine water treatment desalination  
  Abstract Membrane replacement can be a major operating cost of a membrane plant. During the development of a novel desalination technique (the SPARRO process) for treating calcium sulphate scaling mine waters the expected life of tubular cellulose acetate membranes operating in the seeded-slurry mode was investigated.During four operating phases of the plant over a five-year period more than 9 000 h of operating data were obtained. Performance data showed that each operating phase was dominated by either membrane fouling or membrane hydrolysis. Membrane fouling was observed to begin near the front-end of the membrane stack and proceed towards the back. Hydrolysis, on the other hand, occurred first in the tail end of the stack and moved backwards towards the Front end modules. Although two detailed membrane autopsies were carried out no definitive statement can be made in respect of the causes of either membrane hydrolysis or membrane fouling. However, suggestions are presented to explain the observed fouling phenomenon in relation to the turbidity of the pretreated feed water and the presence of chlorine. It is proposed that the presence of radioactive isotopes in the mine water which become concentrated in the process contributes to the observed membrane hydrolysis. A membrane life of up to two years is projected for an improved pretreatment arrangement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4738 ISBN Medium  
  Area Expedition Conference  
  Notes Membrane Life in a Seeded-slurry Reverse Osmosis System; Isi:000087101400013; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9715.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9715 Serial 8  
Permanent link to this record
 

 
Author Tsukamoto, T.K.; Miller, G.C. url  openurl
  Title (up) Methanol as a Carbon Source for Microbiological Treatment of Acid Mine Drainage Type Journal Article
  Year 1999 Publication Water Res. Abbreviated Journal  
  Volume 33 Issue 6 Pages 1365-1370  
  Keywords mine water treatment mining activity sulfate-reducing bacteria microbial activity acid mine drainage methanol passive treatment systems sulfate-reducing bacterium sp-nov  
  Abstract Sulfate reducing passive bioreactors are increasingly being used to remove metals and raise the pH of acidic waste streams from abandoned mines. These systems commonly use a variety of organic substrates (i.e. manure, wood chips) for sulfate reduction. The effectiveness of these systems decreases as easily accessible reducing equivalents are consumed in the substrate through microbial activity. Using column studies at room temperature (23-26 degrees C), we investigated the addition of lactate and methanol to a depleted manure substrate as a method to reactivate a bioreactor that had lost >95% of sulfate reduction activity. A preliminary experiment compared sulfate removal in gravity fed, flow through bioreactors in which similar masses of each substrate were added to the influent solution. Addition of 148 mg/l lactate resulted in a 69% reduction in sulfate concentration from 300 to 92 mg/l, while addition of 144 mg/l methanol resulted in an 88% reduction in sulfate concentration from 300 to 36 mg/l. Because methanol was found to be an effective sulfate reducing substrate, it was chosen for further experiments due to its inherent physical properties (cost, low freezing point and low viscosity liquid) that make it a superior substrate for remote, high elevation sites where freezing temperatures would hamper the use of aqueous solutions. In these column studies, water containing sulfate and ferrous iron was gravity-fed through the bioreactor columns, along with predetermined methanol concentrations containing reducing equivalents to remove 54% of the sulfate. Following an acclimation period for the columns, sulfate concentrations were reduced from of 900 mg/l in the influent to 454 mg/l in the effluent, that reflects a 93% efficiency of electrons from the donor to the terminal electron acceptor. Iron concentrations were reduced from 100 to 2 mg/l and the pH increased nearly 2 units. (C) 1999 Elsevier Science Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Apr; Methanol as a Carbon Source for Microbiological Treatment of Acid Mine Drainage; Isi:000079485400004; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10197.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 10197 Serial 50  
Permanent link to this record
 

 
Author Rajaram, V. url  openurl
  Title (up) Methodology for estimating the costs of treatment of mine drainage Type Journal Article
  Year 2001 Publication Proceedings of the Seventeenth International Mining Congress and Exhibition of Turkey Abbreviated Journal  
  Volume Issue Pages 191-201  
  Keywords mine water treatment  
  Abstract Tetra Tech developed worksheets for the U.S. Department of the Interior, Office of Surface Mining (OSM) to allow a consistent, accurate, and rapid method of estimating the costs of long-term treatment of mine drainage at coal mines, in accordance with the Surface Mining Control and Reclamation Act (SMCRA) of 1977. This paper describes the rationale for the worksheets and how they can be used to calculate costs for site-specific conditions. Decision trees for selection of alternative treatments for acidic or alkaline mine drainage are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Methodology for estimating the costs of treatment of mine drainage; Isip:000171428500021; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17065 Serial 163  
Permanent link to this record
 

 
Author Jong, T. url  openurl
  Title (up) Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor Type Journal Article
  Year 2006 Publication Water Research Abbreviated Journal  
  Volume 40 Issue 13 Pages 2561-2571  
  Keywords mine water treatment  
  Abstract The aim of this study was to operate an upflow anaerobic packed bed reactor (UAPB) containing sulfate reducing bacteria (SRB) under acidic conditions similar to those found in acid mine drainage (AMD). The UAPB was filled with sand and operated under continuous flow at progressively lower pH and was shown to be capable of supporting sulfate reduction at pH values of 6.0, 5.0, 4.5, 4.0 and 3.5 in a synthetic medium containing 53.5 mmol l(-1) lactate. Sulfate reduction rates of 553-1052 mmol m(-3) d(-1) were obtained when the influent solution pH was progressively lowered from pH 6.0 to 4.0, under an optimal flow rate of 2.61 ml min(-1). When the influent pH was further lowered to pH 3.5, sulfate reduction was substantially reduced with only about 1% sulfate removed at a rate of 3.35 mmol m(-3) d(-1) after 20 days of operation. However, viable SRB were recovered from the column, indicating that the SRB population was capable of surviving and metabolizing at low levels even at pH 3.5 conditions for at least 20 days. The changes in conductivity in the SRB column did not always occur with changes in pH and redox potential, suggesting that conductivity measurements may be more sensitive to SRB activity and could be used as an additional tool for monitoring SRB activity. The bioreactor containing SRB was able to reduce sulfate and generate alkalinity even when challenged with influent as low as pH 3.5, indicating that such treatment systems have potential for bioremediating highly acidic, sulfate contaminated waste waters. (c) 2006 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor; Wos:000239469400012; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16929 Serial 108  
Permanent link to this record
 

 
Author Kauffman, J.W. url  openurl
  Title (up) Microbiological Treatment Of Uranium-Mine Waters Type Journal Article
  Year 1986 Publication Environ Sci Technol Abbreviated Journal  
  Volume 20 Issue 3 Pages 243-248  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Microbiological Treatment Of Uranium-Mine Waters; Wos:A1986a219600007; Times Cited: 26; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 14751 Serial 93  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: