toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Laine, D.M.; Jarvis, A.P. url  openurl
  Title (up) Engineering design aspects of passive in situ remediation of mining effluents Type Journal Article
  Year 2003 Publication Land Contam. Reclam. Abbreviated Journal  
  Volume 11 Issue 2 Pages 113-126  
  Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive waste management pyrite iron sulfide remediation mine drainage effluent  
  Abstract Passive treatment of contaminated effluents can offer a 'low cost' management opportunity to remediate drainages to the standards required by enforcement agencies. However, the initial cost of construction of passive treatment systems is significant and often in excess of that for active treatment systems. It is therefore important that the engineering design of the passive systems produces an effective and efficient scheme to enable the construction and maintenance costs to be minimised as far as possible. Possible parameters for the design of passive systems are suggested to seek to obtain uniformity in size and layout of treatment elements where this may be possible. Passive treatment systems include aeration systems, sedimentation ponds, aerobic and anaerobic wetlands, anoxic limestone drains and reducing alkalinity producing systems. Most active treatment systems also include passive elements in the treatment stream. The basic design considerations that should be considered to ensure the construction of efficient systems are discussed.  
  Address D.M. Laine, IMC Consulting Engineers, PO Box 18, Sutton-in-Ashfield NG17 2NS, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0513 ISBN Medium  
  Area Expedition Conference  
  Notes Engineering design aspects of passive in situ remediation of mining effluents; 2530416; United-Kingdom 22; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17523 Serial 60  
Permanent link to this record
 

 
Author King, T.V.V. openurl 
  Title (up) Environmental considerations of active and abandoned mine lands: lessons from Summitville, Colorado Type Journal Article
  Year 1995 Publication US Geological Survey Bulletin Abbreviated Journal  
  Volume 2220 Issue 38 Pages  
  Keywords acid mine drainage mining environmental effect remediation environmental assessment USA Colorado Summitville 1 Geography  
  Abstract Extreme acid-rock drainage is the dominant long-term environmental concern at the Summitville mine and could have been predicted given the geological characteristics of the deposit. Extensive remedial efforts are required to isolate both unweathered sulfides and soluble metal salts in the open-pit area and mine-waste piles from weathering and dissolution. Results of studies as of late 1993 indicate that mining at Summitville has had no discernible short-term adverse effects on barley or alfalfa crops irrigated with Alamosa River water. Remediation of the site will help to ensure that no adverse effects occur over the longer term. -from Editor  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Environmental considerations of active and abandoned mine lands: lessons from Summitville, Colorado; (1119406); 95j-11521; Using Smart Source Parsing pp; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17561 Serial 332  
Permanent link to this record
 

 
Author Meek, F.A., Jr.; Skousen, J.G.; Ziemkiewicz, P.F. openurl 
  Title (up) Evaluation of acid prevention techniques used in surface mining Type Book Chapter
  Year 1996 Publication Acid mine drainage control and treatment Abbreviated Journal  
  Volume Issue Pages  
  Keywords acidic composition; acidification; Allegheny Mountains; Appalachians; central West Virginia; coal mines; controls; environmental analysis; environmental management; ground water; lime; mines; North America; phosphates; pollution; preventive measures; reclamation; remediation; spoils; surface water; United States; Upshur County West Virginia; water quality; water treatment; West Virginia 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Evaluation of acid prevention techniques used in surface mining; GeoRef; English; 2004-051150; Edition: 2 References: 5; illus. incl. 2 tables Approved no  
  Call Number CBU @ c.wolke @ 6360 Serial 301  
Permanent link to this record
 

 
Author Arango, I. openurl 
  Title (up) Evaluation of the beneficial effects of the acidophilic alga Euglena mutabilis on acid mine drainage systems Type Book Whole
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage atmospheric precipitation benthic taxa bioremediation dissolved materials dissolved oxygen electron microscopy data Euglena mutabilis Green Valley Mine ICP mass spectra Indiana iron mass spectra metals microorganisms mines oxygen pH photochemistry photosynthesis pollution rain remediation sediments soils spectra temperature United States Vigo County Indiana water 22, Environmental geology  
  Abstract Euglena mutabilis is an acidophilic, photosynthetic protozoan that forms benthic mats in acid mine drainage (AMD) channels. At the Green Valley mine, western Indiana, E. mutabilis resides in AMD measuring <4.2 pH, with high concentrations of dissolved constituents (up to 22.67 g/l). One of the main factors influencing E. mutabilis distribution is water temperature. The microbe forms thick (>1 mm), extensive mats during spring and fall, when water temperature is between 13 and 28 degrees C. During winter and summer, when temperatures are outside this range, benthic communities have a very patchy distribution and are restricted to areas protected from extreme temperature changes. E. mutabilis also responds to rapid increases in pH, which are associated with rainfall events. During these events pH can increase above 4.0, causing precipitation of Fe and Al oxy-hydroxides that cover the mats. The microbe responds by moving through the precipitates, due to phototaxis, and reestablishing the community at the sediment-water interface within 12 hours. The biological activities of E. mutabilis may have a beneficial effect on AMD systems by removing iron from effluent via oxygenic photosynthesis, and/or by internal sequestration. Photosynthesis by E. mutabilis contributes elevated concentrations of dissolved oxygen (DO), up to 17.25 mg/l in the field and up to 11.83 mg/l in the laboratory, driving oxidation and precipitation of reduced metal species, especially Fe (II), which are dissolved in the effluent. In addition, preliminary electro-microscopic and staining analyses of the reddish intracellular granules in E. mutabilis indicate that the granules contain iron, suggesting that E. mutabilis sequesters iron from AMD. Inductive coupled plasma analysis of iron concentration in AMD with and without E. mutabilis also shows that E. mutabilis accelerates the rate of Fe removal from the media. Whether iron removal is accelerated by internal sequestration of iron and/or by precipitation via oxygenic photosynthesis has yet to be determined. These biological activities may play an important role in the natural remediation of AMD systems.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Indiana State University, Place of Publication Terre Haute Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Evaluation of the beneficial effects of the acidophilic alga Euglena mutabilis on acid mine drainage systems; GeoRef; English; References: 39; illus. incl. 3 tables Approved no  
  Call Number CBU @ c.wolke @ 16491 Serial 476  
Permanent link to this record
 

 
Author Niyogi, D.K.; McKnight, D.M.; Lewis, W.M., Jr.; Kimball, B.A. openurl 
  Title (up) Experimental diversion of acid mine drainage and the effects on a headwater stream Type Journal Article
  Year 1999 Publication Water-Resources Investigations Report Abbreviated Journal  
  Volume Wri 99-4018-A Issue Pages 123-130  
  Keywords abandoned mines acid mine drainage algae benthonic taxa biomass biota Colorado experimental studies heavy metals Lake County Colorado Leadville Colorado metals mines pH Plantae pollution remediation Saint Kevin Gulch Colorado tracers United States USGS water zinc  
  Abstract An experimental diversion of acid mine drainage was set up near an abandoned mine in Saint Kevin Gulch, Colorado. A mass-balance approach using natural tracers was used to estimate flows into Saint Kevin Gulch. The diversion system collected about 85 percent of the mine water during its first year of operation (1994). In the first 2 months after the diversion, benthic algae in an experimental reach (stream reach around which mine drainage was diverted) became more abundant as water quality improved (increase in pH, decrease in zinc concentrations) and substrate quality changed (decrease in rate of metal hydroxide deposition). Further increases in pH to levels above 4.6, however, led to lower algal biomass in subsequent years (1995-97). An increase in deposition of aluminum precipitates at pH greater than 4.6 may account for the suppression of algal biomass. The pH in the experimental reach was lower in 1998 and algal biomass increased. Mine drainage presents a complex, interactive set of stresses on stream ecosystems. These interactions need to be considered in remediation goals and plans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0092-332x ISBN Medium  
  Area Expedition Conference  
  Notes Experimental diversion of acid mine drainage and the effects on a headwater stream; 2; GeoRef: 2001-017199 als Datei vorhanden 4 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17398 Serial 286  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: