toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Harrington, J.M. url  openurl
  Title (up) In situ treatment of metals in mine workings and materials Type Journal Article
  Year 2002 Publication Tailings and Mine Waste '02 Abbreviated Journal  
  Volume Issue Pages 251-261  
  Keywords mine water treatment  
  Abstract Contact of oxygen contained in air and water with mining materials can increase the solubility of metals. In heaps leached by cyanide, metals can also be made soluble through complexation with cyanide. During closure, water in heaps, and water collected in mine workings and pit lakes may require treatment to remove these metals. In situ microbiological treatment to create reductive conditions and to precipitate metals as sulfides or elemental metal has been applied at several sites with good success. Treatment by adding organic carbon to stimulate in situ microbial reduction has been successful in removing arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, silver, tin, uranium, and zinc to a solid phase. Closure practices can affect the success of in situ treatment at mining sites, and affect the stability of treated materials. This paper defines factors that determine the cost and permanence of in situ treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes In situ treatment of metals in mine workings and materials; Isip:000175560600034; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17037 Serial 161  
Permanent link to this record
 

 
Author Groudev, S.N.; Georgiev, P.S.; Spasova, I.I.; Nicolova, M.N. url  openurl
  Title (up) In situ treatment of mine waters by means of a permeable barrier Type Journal Article
  Year 2000 Publication Groundwater 2000 Abbreviated Journal  
  Volume Issue Pages 417-418  
  Keywords mine water treatment  
  Abstract Acid ground waters contaminated with radioactive elements (U, Ra, Th), toxic heavy metals (Cu, Zn, Cd, Mn, Fe), arsenic and sulphates were treated by means of a permeable barrier. The barrier was filled with a mixture of biodegradable solid organic substrates (spent mushroom compost, sawdust and cow manure) and was inhabited by a mixed microbial community consisting of sulphate-reducing bacteria and other metabolically interdependent microorganisms. An efficient removal of the pollutants was achieved by this barrier during the different climatic seasons, even at ambient temperatures close to degrees C. The microbial dissimilatory sulphate reduction and the sorption of pollutants by the organic matter in the barrier were the main processes involved in this removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes In situ treatment of mine waters by means of a permeable barrier; Isip:000088384300185; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8407 Serial 173  
Permanent link to this record
 

 
Author Bochkarev, G.R.; Beloborodov, A.V.; Kondrat'ev, S.A.; Pushkareva, G.I. url  openurl
  Title (up) Intensification of Aeration in treating Natural-Water and Mine Water Type Journal Article
  Year 1994 Publication J. Min. Sci. Abbreviated Journal  
  Volume 30 Issue 6 Pages 5  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1062-7391 ISBN Medium  
  Area Expedition Conference  
  Notes Nov; Intensification of Aeration in treating Natural-Water and Mine Water; New York: Consultants Bureau; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7033.pdf; Opac Approved no  
  Call Number CBU @ c.wolke @ 7033 Serial 15  
Permanent link to this record
 

 
Author Schoeman, J.J.; Steyn, A. url  openurl
  Title (up) Investigation into alternative water treatment technologies for the treatment of underground mine water discharged by Grootvlei Proprietary Mines Ltd into the Blesbokspruit in South Africa Type Journal Article
  Year 2001 Publication Desalination Abbreviated Journal  
  Volume 133 Issue 1 Pages 13-30  
  Keywords underground mine water treatment technologies reverse osmosis electrodialysis reversal ion-exchange water quality brine disposal treatment costs  
  Abstract Grootvlei Proprietary Mines Ltd is discharging between 80 and 100 Ml/d underground water into the Blesbokspruit. This water is pumped out of the mine to keep the underground water at such a level as to make mining possible. The water is of poor quality because it contains high TDS levels (2700-3800 mg/l) including high concentrations of iron, manganese, sulphate, calcium, magnesium, sodium and chloride. This water will adversely affect the water ecology in the Blesbokspruit, and it will significantly increase the TDS concentration of one of the major water resources if not treated prior to disposal into the stream. Therefore, alternative water desalination technologies were evaluated to estimate performance and the economics of the processes for treatment of the mine water. It was predicted that water of potable quality should be produced from the mine water with spiral reverse osmosis (SRO). It was demonstrated that it should be possible to reduce the TDS of the mine water (2000-2700-3400-4500 mg/l) to potable standards with SRO (85% water recovery). The capital costs (pretreatment and desalination) for a 80 Ml/d plant (worst-case water) were estimated at US$35M. Total operating costs were estimated at 88.1c/kl. Brine disposal costs were estimated at US$18M. Therefore, the total capital costs are estimated at US$53M. It was predicted that it should be possible to produce potable water from the worst-case feed water (80 Ml/d) with the EDR process. It was demonstrated that the TDS in the feed could be reduced from 4178 to 246 mg/l in the EDR product (65% water recovery). The capital costs (pretreatment plus desalination) to desalinate the worst-case feed water to potable quality with EDR is estimated at US$53.3M. The operational costs are estimated at 47.6 c/kl. Brine disposal costs were estimated at US$42M. Therefore, the total capital costs are estimated at US$95.3 M. It was predicted that it should be possible to produce potable water from the mine water with the GYP-CIX ion- exchange process. It was demonstrated that the feed TDS (2000- 4500 mg/l) could be reduced to less than 240 mg/l (54% water recovery for the worst-case water). The capital cost for an 80 Ml/d ion-exchange plant (worst-case water) was estimated at US$26.7M (no pretreatment). Operational costs were estimated at 60.4 c/kl. Brine disposal costs were estimated at US$55.1M. Therefore, the total desalination costs were estimated at US$81.8M. The capital outlay for a SRO plant will be significantly less than that for either an EDR or a GYP-CIX plant. The operating costs, however, of the RO plant are significantly higher than for the other two processes. Potable water sales, however, will bring more in for the RO process than for the other two processes because a higher water recovery can be obtained with RO. The operating costs minus the savings in water sales were estimated at 17.2; 6.7 and US$8.6M/y for the RO, EDR and GYP-CIX processes, respectively (worst case). Therefore, the operational costs of the EDR and GYP-CIX processes are the lowest if the sale of water is taken into consideration. This may favour the EDR and GYP-CIX processes for the desalination of the mine water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-9164 ISBN Medium  
  Area Expedition Conference  
  Notes Feb. 10; Investigation into alternative water treatment technologies for the treatment of underground mine water discharged by Grootvlei Proprietary Mines Ltd into the Blesbokspruit in South Africa; Isi:000167087500002; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10184.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17480 Serial 23  
Permanent link to this record
 

 
Author Zhuang, J.M. url  openurl
  Title (up) Lignor(TM) process for acidic rock drainage treatment Type Journal Article
  Year 2004 Publication Environ. Technol. Abbreviated Journal  
  Volume 25 Issue 9 Pages 1031-1040  
  Keywords mine water treatment  
  Abstract The process using lignosulfonates for acidic rock drainage (ARD) treatment is referred to as the Lignor(TM) process. Lignosulfonates are waste by-products produced in the sulfite pulping process. The present study has shown lignosulfonates are able to protect lime from developing an external surface coating, and hence to favor its dissociation. Further, the addition of lignosulfonates to ARD solutions increased the clotting and settling rate of the formed sludge. The capability of lignosulfonates to form stable metal-lignin complexes makes them very useful in retaining metal ions and thus improving the long-term stability of the sludge against leaching. The Lignor(TM) process involves metal sorption with lignosulfonates, ARD neutralization by lime to about pH 7, pH adjustment with caustic soda to 9.4 – 9.6, air oxidation to lower the pH to a desired level, and addition of a minimum amount of FeCl3 for further removal of dissolved metals. The Lignor(TM) process removes all concerned metals (especially Al and Mn) from the ARD of the Britannia Mine (located at Britannia Beach, British Columbia, Canada) to a level lower than the limits of the B.C. Regulations. Compared with the high-density sludge (HDS) process, the Lignor(TM) process has many advantages, such as considerable savings in lime consumption, greatly reduced sludge volume, and improved sludge stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Lignor(TM) process for acidic rock drainage treatment; Wos:000224971800006; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16998 Serial 117  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: