toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brunet, J.-F. openurl 
  Title (up) Drainages miniers acides; contraintes et remedes; etat des connaissances--Acid mine drainage; problems and remediation techniques; state of the art Type Journal Article
  Year 2000 Publication Principaux Resultats Scientifiques – Bureau de Recherches Geologiques et Minieres Abbreviated Journal  
  Volume 1999/2000 Issue Pages 97-98  
  Keywords acid mine drainage; cost; decontamination; dissolved materials; efficiency; metals; pollutants; pollution; regulations; remediation; sulfides; technology; waste water; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0766-7175 ISBN Medium  
  Area Expedition Conference  
  Notes Drainages miniers acides; contraintes et remedes; etat des connaissances--Acid mine drainage; problems and remediation techniques; state of the art; 2002-059955; France (FRA); GeoRef; French; English Approved no  
  Call Number CBU @ c.wolke @ 5888 Serial 429  
Permanent link to this record
 

 
Author Younger, P.L. url  openurl
  Title (up) Holistic remedial strategies for short- and long-term water pollution from abandoned mines Type Journal Article
  Year 2000 Publication Transactions of the Institution of Mining and Metallurgy Section a-Mining Technology Abbreviated Journal  
  Volume 109 Issue Pages A210-A218  
  Keywords abandoned mines acid mine drainage Europe mines mining planning pollution remediation United Kingdom water pollution Western Europe  
  Abstract Where mining proceeds below the water-table-as it has extensively in Britain and elsewhere-water ingress is not only a hindrance during mineral extraction but also a potential liability after abandonment. This is because the cessation of dewatering that commonly follows mine closure leads to a rise in the water-table and associated, often rapid, changes in the chemical regime of the subsurface. Studies over the past two decades have provided insights into the nature and time-scales of these changes and provide a basis for rational planning of mine-water management during and after mine abandonment. The same insights into mine-water chemistry provide hints for the efficient remediation of pollution (typically due to Fe, Mn and Al and, in some cases, Zn, Cd, Pb and other metals). Intensive treatment (by chemical dosing with enhanced sedimentation or alternative processes, such as sulphidization or reverse osmosis) is often necessary only during the first few years following complete flooding of mine voids. Passive treatment (by the use of gravity-flow geochemical reactors and wetlands) may be both more cost-effective and ecologically more responsible in the long term. By the end of 1999 a total of 28 passive systems had been installed at United Kingdom mine sites, including examples of system types currently unique to the United Kingdom. Early performance data for all the systems are summarized and shown to demonstrate the efficacy of passive treatment when appropriately applied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0371-7844 ISBN Medium  
  Area Expedition Conference  
  Notes Holistic remedial strategies for short- and long-term water pollution from abandoned mines; Wos:000167240600013; Times Cited: 2; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17458 Serial 126  
Permanent link to this record
 

 
Author Swayze, G.A. url  openurl
  Title (up) Imaging spectroscopy: A new screening tool for mapping acidic mine waste Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1531-+  
  Keywords mine water treatment  
  Abstract Imaging spectroscopy is a relatively new remote sensing tool that provides a rapid method to screen entire mining districts for potential sources of surface acid drainage. An imaging spectrometer known as the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) measures light reflected from the surface in 224 spectral channels from 0.4 – 2.5 mum. Spectral data from this instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, Colorado. Here, the process of pyrite oxidation at the surface produces acidic water that is gradually neutralized as it drains away from mine waste, depositing a central jarosite zone surrounded by a jarosite + goethite zone, in turn surrounded by a goethite zone with a discontinuous hematite rim zone. Leaching tests show that pH is most acidic in the jarosite and jarosite+goethite zones and is near-neutral in the goethite zone. Measurements indicate that metals leach from minerals and amorphous materials in the jarosite + goethite and jarosite zones at concentrations 10 – 50 times higher than from goethite zone minerals. Goethite zones that fully encircle mine waste may indicate some attenuation of leachate metals and thus reduced metal loading to streams. The potential for impact by acidic drainage is highest where streams intersect the jarosite and jarosite + goethite zones. In these areas, metal-rich acidic surface runoff may flow directly into streams. The U.S. Environmental Protection Agency estimates (U.S. EPA, 1998) that mineral maps made from AVIRIS data at Leadville have accelerated remediation efforts by two years and saved over $2 million in cleanup costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Imaging spectroscopy: A new screening tool for mapping acidic mine waste; Isip:000169875500152; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17111 Serial 164  
Permanent link to this record
 

 
Author Yernberg, W.R. url  openurl
  Title (up) Improvements seen in acid-mine-drainage technology Type Journal Article
  Year 2000 Publication Min. Eng. Abbreviated Journal  
  Volume 52 Issue 9 Pages 67-70  
  Keywords acid mine drainage; bacteria; chemical weathering; coal mines; Colorado; copper ores; effects; geochemistry; hydrogen; inorganic acids; international cooperation; ions; lead ores; medical geology; metal ores; mines; molybdenum ores; oxidation; pH; pollution; prediction; pyrite; reclamation; remediation; research; risk assessment; silicates; soil treatment; solid waste; sulfides; sulfuric acid; Summitville Mine; tailings; tailings ponds; technology; United States; waste disposal; weathering; zinc ores 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-5187 ISBN Medium  
  Area Expedition Conference  
  Notes Improvements seen in acid-mine-drainage technology; 2000-069686; illus. incl. sect., sketch map United States (USA); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5808 Serial 73  
Permanent link to this record
 

 
Author Groudev, S.N.; Georgiev, P.S.; Spasova, I.I.; Nicolova, M.N. url  openurl
  Title (up) In situ treatment of mine waters by means of a permeable barrier Type Journal Article
  Year 2000 Publication Groundwater 2000 Abbreviated Journal  
  Volume Issue Pages 417-418  
  Keywords mine water treatment  
  Abstract Acid ground waters contaminated with radioactive elements (U, Ra, Th), toxic heavy metals (Cu, Zn, Cd, Mn, Fe), arsenic and sulphates were treated by means of a permeable barrier. The barrier was filled with a mixture of biodegradable solid organic substrates (spent mushroom compost, sawdust and cow manure) and was inhabited by a mixed microbial community consisting of sulphate-reducing bacteria and other metabolically interdependent microorganisms. An efficient removal of the pollutants was achieved by this barrier during the different climatic seasons, even at ambient temperatures close to degrees C. The microbial dissimilatory sulphate reduction and the sorption of pollutants by the organic matter in the barrier were the main processes involved in this removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes In situ treatment of mine waters by means of a permeable barrier; Isip:000088384300185; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8407 Serial 173  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: