toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author McGregor, R. url  openurl
  Title (up) The use of an in-situ porous reactive wall to remediate a heavy metal plume Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1227-1232  
  Keywords mine water treatment  
  Abstract The oxidation of sulfide minerals at an ore transfer location in Western Canada has resulted in widespread contamination of underlying soil and groundwater. The oxidation of sulfide minerals has released sulfate [SO4] and heavy metals including cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn] into the groundwater. A compost-based sulfate-reducing reactive wall was installed in the path of the plume in an attempt to reduce the potential impact of the heavy metals on a down-gradient marine inlet. Monitoring of the reactive wall over a 21-month period has shown that Cu concentrations decrease from over 4000 mug/L to less than 5 mug/L. Cadmium, Ni, Pb, and Zn concentrations also show similar decreases with treated concentrations generally being observed near or below detection limits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The use of an in-situ porous reactive wall to remediate a heavy metal plume; Isip:000169875500122; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17109 Serial 166  
Permanent link to this record
 

 
Author Wolkersdorfer, C. url  openurl
  Title (up) Tracer tests as a mean of remediation procedures in mines Type Journal Article
  Year 2006 Publication Uranium in the Environment: Mining Impact and Consequences Abbreviated Journal  
  Volume Issue Pages 817-822  
  Keywords mine water treatment  
  Abstract Mining usually causes severe anthropogenic changes by which the ground- or surface water might be significantly polluted. One of the main problems in the mining industry are acid mine drainage, the drainage of heavy metals, and the prediction of mine water rebound after mine closure. Consequently, the knowledge about the hydraulic behaviour of the mine water within a flooded mine might significantly reduce the costs of mine closure and remediation. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, although only few tracer tests in flooded mines have been published so far. Most tracer tests linked to mine water problems were related to either pollution of the aquifer or radioactive waste disposal and not the mine water itself.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Tracer tests as a mean of remediation procedures in mines; Isip:000233396400084; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 7590 Serial 153  
Permanent link to this record
 

 
Author Groudev, S.N. url  openurl
  Title (up) Treatment of acid mine drainage by a natural wetland Type Journal Article
  Year 2002 Publication Wetlands and Remediation Ii Abbreviated Journal  
  Volume Issue Pages 133-139  
  Keywords mine water treatment  
  Abstract Acid drainage waters generated in the copper ore deposit Elshitza. Central Bulgaria, were treated by a natural wetland located in the deposit. The waters had a pH in the range of about 2.5 – 3.5 and contained copper, cadmium, arsenic, iron, manganese and sulphates as main pollutants. The watercourse through the wetland covered a distance of about 100 in and the water flow rate varied in the range of about 0.5 – 2.0 1/s. The wetland was characterized by an abundant water and emergent vegetation and a diverse microflora. Phragmites communis was the prevalent plant species in the wetland but species of the genera Scirpus, Typha, Juncus, Carex and Poa as well as different algae were also well present. It was found that an efficient removal of the pollutants was achieved and their residual concentrations in the wetland effluents were decreased below the relevant permissible levels for water intended for use in the agriculture and/or industry. The removal was clue to different processes but the microbial dissimilatory sulphate reduction and the sorption of pollutants by the organic matter and clay minerals present in the wetland played the main role. Negative effects of the pollutants on the growth and activity of the indigenous plant and microbial communities were not observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of acid mine drainage by a natural wetland; Isip:000175585500017; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17039 Serial 159  
Permanent link to this record
 

 
Author Murdock, D.J. url  openurl
  Title (up) Treatment of acid mine drainage by the high density sludge process Type Journal Article
  Year 1995 Publication Sudbury '95 – Mining and the Environment, Conference Proceedings, Vols 1-3 Abbreviated Journal  
  Volume Issue Pages 431-439  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of acid mine drainage by the high density sludge process; Isip:A1995bg39j00043; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8883 Serial 142  
Permanent link to this record
 

 
Author Nakazawa, H. url  openurl
  Title (up) Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge Type Journal Article
  Year 2006 Publication Sohn International Symposium Advanced Processing of Metals and Materials, Vol 9 Abbreviated Journal  
  Volume Issue Pages 373-381  
  Keywords mine water treatment arsenic biotechnology filtration iron membranes microorganisms mining industry oxidation sludge treatment acid mine drainage arsenic ion sludge treatment Horobetsu mine Hokkaido Japan ferrous iron membrane filter pore size arsenite solutions microbial oxidation As Fe Manufacturing and Production  
  Abstract An acid mine drainage in abandoned Horobetsu mine in Hokkaido, Japan, contains arsenic and iron ions; total arsenic ca.10ppm, As(III) ca. 8.5ppm, total iron 379ppm, ferrous iron 266ppm, pH1.8. Arsenic occurs mostly as arsenite (As (III)) or arsenate (As (V)) in natural water. As(III) is more difficult to be remove than As(V), and it is necessary to oxidize As(III) to As(V) for effective removal. 5mL of the mine drainage or its filtrate through the membrane filter (pore size 0.45 mu m) were added to arsenite solutions (pH1.8) with the concentration of 5ppm. After the incubation of 30 days, As(III) was oxidized completely with the addition of the mine drainage while the oxidation did not occur with the addition of filtrate, indicating the microbial oxidation of As(III). In this paper, we have investigated the microbial oxidation of As(III) in acid water below pH2.0.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-87339-642-1 ISBN Medium  
  Area Expedition Conference  
  Notes Aug 27-31; Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge; Isip:000241817200032; Conference Paper Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17456 Serial 151  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: