toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jarvis, A.P.; Younger, P.L. url  openurl
  Title (up) Passive treatment of ferruginous mine waters using high surface area media Type Journal Article
  Year 2001 Publication Water Res. Abbreviated Journal  
  Volume 35 Issue 15 Pages 3643-3648  
  Keywords mine water treatment passive treatment mine water accretion oxidation iron manganese water treatment  
  Abstract Rapid oxidation and accretion of iron onto high surface area media has been investigated as a potential passive treatment option for ferruginous, net-alkaline minewaters. Two pilot-scale reactors were installed at a site in County Durham, UK. Each 2.0m high cylinder contained different high surface area plastic trickling filter media. Ferruginous minewater was fed downwards over the media at various flow-rates with the objective of establishing the efficiency of iron removal at different loading rates. Residence time of water within the reactors was between 70 and 360s depending on the flow-rate (1 and 12l/min, respectively). Average influent total iron concentration for the duration of these experiments was 1.43mg/l (range 1.08-1.84mg/l; n=16), whilst effluent iron concentrations averaged 0.41mg/l (range 0.20-1.04mg/l; n=15) for Reactor A and 0.38mg/l (range 0.11-0.93mg/l; n=16) for Reactor B. There is a strong correlation between influent iron load and iron removal rate. Even at the highest loading rates (approximately 31.6g/day) 43% and 49% of the total iron load was removed in Reactors A and B, respectively. At low manganese loading rates (approximately 0.50-0.90g/day) over 50% of the manganese was removed in Reactor B. Iron removal rate (g/m3/d) increases linearly with loading rate (g/day) up to 14g/d and the slope of the line indicates that a mean of 85% of the iron is removed. In conclusion, it appears that the oxidation and accretion of ochre on high surface area media may be a promising alternative passive technology to constructed wetlands at certain sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Oct; Passive treatment of ferruginous mine waters using high surface area media; 9; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9698.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9698 Serial 27  
Permanent link to this record
 

 
Author McLeod, K.W.; Ciravolo, T.G. openurl 
  Title (up) Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions Type Journal Article
  Year 2003 Publication Environmental Toxicology and Chemistry Abbreviated Journal  
  Volume 22 Issue 12 Pages 2948-2951  
  Keywords Heavy metals ecological abstracts: pollution (73 7 3) seedling saturated medium biomass manganese sensitivity analysis bioaccumulation Nyssa aquatica Taxodium distichum  
  Abstract In anaerobic soils of wetlands, Mn is highly available to plants because of the decreasing redox potential and pH of flooded soil. When growing adjacent to each another in wetland forests, water tupelo (Nyssa aquatica L.) had 10 times greater leaf manganese concentration than bald cypress (Taxodium distichum [L.] Richard). This interspecific difference was examined over a range of manganese-enriched soil conditions in a greenhouse experiment. Water tupelo and bald cypress seedlings were grown in fertilized potting soil enriched with 0, 40, 80, 160, 240, 320, and 400 mg Mn/L of soil and kept at saturated to slightly flooded conditions. Leaf Mn concentration was greater in water tupelo than bald cypress for all but the highest Mn addition treatment. Growth of water tupelo seedlings was adversely affected in treatments greater than 160 mg Mn/L. Total biomass of water tupelo in the highest Mn treatment was less than 50% of the control. At low levels of added Mn, bald cypress was able to restrict uptake of Mn at the roots with resulting low leaf Mn concentrations. Once that root restriction was exceeded, Mn concentration in bald cypress leaves increased greatly with treatment; that is, the highest treatment was 40 times greater than control (4,603 vs 100 < mu >g/g, respectively), but biomass of bald cypress was unaffected by manganese additions. Bald cypress, a tree that does not naturally accumulate manganese, does so under manganese-enriched conditions and without biomass reduction in contrast to water tupelo, which is severely affected by higher soil Mn concentrations. Thus, bald cypress would be less affected by increased manganese availability in swamps receiving acidic inputs such as acid mine drainage, acid rain, or oxidization of pyritic soils.  
  Address K.W. McLeod, Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, SC 29802, United States mcleod@srel.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0730-7268 ISBN Medium  
  Area Expedition Conference  
  Notes Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions; 2574798; United-States 15; Geobase Approved no  
  Call Number CBU @ c.wolke @ 16010 Serial 302  
Permanent link to this record
 

 
Author Coulton, R.; Bullen, C.; Hallett, C. url  openurl
  Title (up) The design and optimisation of active mine water treatment plants Type Journal Article
  Year 2003 Publication Land Contam. Reclam. Abbreviated Journal  
  Volume 11 Issue 2 Pages 273-280  
  Keywords sludge mine water treatment mine water active treatment precipitation iron manganese high density sludge sulphide Groundwater problems and environmental effects Pollution and waste management non radioactive manganese sulfide pollutant removal iron water treatment mine drainage  
  Abstract This paper provides a 'state of the art' overview of active mine water treatment. The paper discusses the process and reagent selection options commonly available to the designer of an active mine water treatment plant. Comparisons are made between each of these options, based on technical and financial criteria. The various different treatment technologies available are reviewed and comparisons made between conventional precipitation (using hydroxides, sulphides and carbonates), high density sludge processes and super-saturation precipitation. The selection of reagents (quick lime, slaked lime, sodium hydroxide, sodium carbonate, magnesium hydroxide, and proprietary chemicals) is considered and a comparison made on the basis of reagent cost, ease of use, final effluent quality and sludge settling criteria. The choice of oxidising agent (air, pure oxygen, peroxide, etc.) for conversion of ferrous to ferric iron is also considered. Whole life costs comparisons (capital, operational and decommissioning) are made between conventional hydroxide precipitation and the high density sludge process, based on the actual treatment requirements for four different mine waters.  
  Address R. Coulton, Unipure Europe Ltd., Wonastow Road, Monmouth NP25 5JA, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0513 ISBN Medium  
  Area Expedition Conference  
  Notes The design and optimisation of active mine water treatment plants; 2530436; United-Kingdom 4; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17513 Serial 59  
Permanent link to this record
 

 
Author Stewart, B.R. openurl 
  Title (up) The influence of fly ash additions on acid mine drainage production from coarse coal refuse Type Book Whole
  Year 1996 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; acidic composition; alkalic composition; alkalinity; ash; coal; controls; copper; diffusion; dissolved materials; experimental studies; geologic hazards; hydraulic conductivity; iron; leachate; leaching; manganese; metals; organic residues; oxidation; oxygen; pH; pollutants; pollution; sedimentary rocks; soil treatment; soils; sorption; sulfate ion; waste disposal; water quality 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Virginia Polytechnic Institute and State University, Place of Publication Blacksburg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The influence of fly ash additions on acid mine drainage production from coarse coal refuse; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6351 Serial 230  
Permanent link to this record
 

 
Author Ye, Z.H.; Whiting, S.N.; Qian, J.H.; Lytle, C.M.; Lin, Z.Q.; Terry, N. url  openurl
  Title (up) Trace element removal from coal ash leachate by a 10-year-old constructed wetland Type Journal Article
  Year 2001 Publication J. Environ. Qual. Abbreviated Journal  
  Volume 30 Issue 5 Pages 1710-1719  
  Keywords acid mine drainage; Alabama; ash; bioaccumulation; boron; cadmium; constructed wetlands; environmental analysis; environmental effects; iron; Jackson County Alabama; Juncus effusus; leachate; manganese; metals; pH; pollutants; pollution; remediation; soils; sulfur; trace elements; Typha latifolia; United States; vegetation; waste water; wetlands; Widows Creek; Widows Creek Steam Plant; zinc; Typha; Juncus 22, Environmental geology  
  Abstract This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. ne trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e., >10 yr after construction).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0047-2425 ISBN Medium  
  Area Expedition Conference  
  Notes Aug 1; Trace element removal from coal ash leachate by a 10-year-old constructed wetland; 2002-017274; References: 33; illus. incl. 2 tables United States (USA); file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/5703.pdf; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5703 Serial 76  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: