toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Anonymous url  isbn
openurl 
  Title Type Book Whole
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages 118 pp  
  Keywords abandoned mines; acid mine drainage; aquifer vulnerability; aquifers; arsenic; bibliography; bioremediation; chemical properties; chemical waste; chromium; constructed wetlands; decontamination; disposal barriers; ground water; grouting; industrial waste; metals; microorganisms; mines; mobility; phytoremediation; pollutants; pollution; programs; reclamation; remediation; sludge; soil treatment; soils; solvents; sorption; Superfund; surface water; tailings; toxic materials; waste disposal; waste disposal sites; water quality; wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Society for Mining, Metallurgy, and Exploration Place of Publication Littleton Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Remediation of historical mine sites; technical summaries and bibliography Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN 0873351622 Medium  
  Area Expedition Conference  
  Notes Remediation of historical mine sites; technical summaries and bibliography; 1998-031431; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6164 Serial 11  
Permanent link to this record
 

 
Author LaPointe, F.; Fytas, K.; McConchie, D. url  openurl
  Title Using permeable reactive barriers for the treatment of acid rock drainage Type Journal Article
  Year 2005 Publication International journal of surface mining, reclamation and environment Abbreviated Journal  
  Volume 19 Issue 1 Pages 57-65  
  Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) waste management remediation mining industry pollution control acid mine drainage reactive barrier aluminium industry effluents industrial waste mineral processing industry oxidation waste handling permeable reactive barriers acid rock drainage treatment acid mine drainage environmental problem Canadian mineral industry oxidation sulphide minerals mine waste mine tailings heavy metals acid remediation technology metallurgical residues aluminium extraction industry acid mine effluents Manufacturing and Production acid mine drainage Bauxsol Canada disposal barriers effluents experimental studies heavy metals instruments oxidation permeable reactive barriers pollutants pollution pyrite pyrrhotite remediation sulfides tailings waste disposal waste management  
  Abstract Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1389-5265 ISBN Medium  
  Area Expedition Conference  
  Notes Using permeable reactive barriers for the treatment of acid rock drainage; 8467608; Journal Paper; SilverPlatter; Ovid Technologies Approved no  
  Call Number CBU @ c.wolke @ 16786 Serial 12  
Permanent link to this record
 

 
Author Fyson, A.; Nixdorf, B.; Steinberg, C.E.W. url  openurl
  Title Manipulation of the sediment-water interface of extremely acidic mining lakes with potatoes; laboratory studies with intact sediment cores Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes Type Book Chapter
  Year 1998 Publication Water, Air and Soil Pollution Abbreviated Journal  
  Volume Issue Pages 353-363  
  Keywords acid mine drainage; acidification; ammonium ion; Brandenburg Germany; Central Europe; concentration; dissolved materials; ecology; Europe; eutrophication; ferric iron; Germany; iron; lacustrine environment; Lusatia; mass balance; metals; nitrate ion; pollutants; pollution; pore water; remediation; sediment-water interface; sediments; surface water; titration; transport 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication 108 Editor Peiffer, S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Manipulation of the sediment-water interface of extremely acidic mining lakes with potatoes; laboratory studies with intact sediment cores Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes; GeoRef; English; 1999-021233; Conference on Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes, Bayreuth, Federal Republic of Germany, Feb. 1997 References: 17; illus. Approved no  
  Call Number CBU @ c.wolke @ 6102 Serial 21  
Permanent link to this record
 

 
Author Ntengwe, F.W. url  openurl
  Title An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia Type Journal Article
  Year 2005 Publication Phys. Chem. Earth Abbreviated Journal  
  Volume 30 Issue 11-16 Spec. Iss. Pages 726-734  
  Keywords mine water treatment Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) wastewater pollution control acid mine drainage Hyacinthus Zambia Southern Africa Sub Saharan Africa Africa Eastern Hemisphere World  
  Abstract The wastewaters coming from mining operations usually have low pH (acidic) values and high levels of metal pollutants depending on the type of metals being extracted. If unchecked, the acidity and metals will have an impact on the surface water. The organisms and plants can adversely be affected and this renders both surface and underground water unsuitable for use by the communities. The installation of a treatment plant that can handle the wastewaters so that pH and levels of pollutants are reduced to acceptable levels provides a solution to the prevention of polluting surface and underground waters and damage to ecosystems both in water and surrounding soils. The samples were collected at five points and analyzed for acidity, total suspended solids, and metals. It was found that the pH fluctuated between pH 2 when neutralization was forgotten and pH 11 when neutralization took place. The levels of metals that could cause impacts to the water ecosystem were found to be high when the pH was low. High levels of metals interfere with multiplication of microorganisms, which help in the natural purification of water in stream and river bodies. The fish and hyacinth placed in water at the two extremes of pH 2 and pH 11 could not survive indicating that wastewaters from mining areas should be adequately treated and neutralized to pH range 6-9 if life in natural waters is to be sustained. < copyright > 2005 Elsevier Ltd. All rights reserved.  
  Address F.W. Ntengwe, Copperbelt University, School of Technology, P.O. Box 21692, Kitwe, Zambia fntengwe@cbu.ac.zm  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Review; An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia; 2790318; United-Kingdom 23; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10301.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17497 Serial 24  
Permanent link to this record
 

 
Author Tarutis Jr, W.J.; Stark, L.R.; Williams, F.M. url  openurl
  Title Sizing and performance estimation of coal mine drainage wetlands Type Journal Article
  Year 1999 Publication Ecological Engineering Abbreviated Journal  
  Volume 12 Issue 3-4 Pages 353-372  
  Keywords mine water treatment coal mine drainage constructed wetlands efficiency first-order removal loading rate removal kinetics sizing zero-order removal constructed wetlands water-quality iron kinetics removal model phosphorus retention mechanism design Wetlands and estuaries geographical abstracts: physical geography hydrology (71 6 8) acid mine drainage effluent performance assessment remediation wetland management  
  Abstract The effectiveness of wetland treatment of acid mine drainage (AMD) was assessed using three measures of performance: treatment efficiency, area-adjusted removal, and first-order removal. Mathematical relationships between these measures were derived from simple kinetic equations. Area-adjusted removal is independent of pollutant concentration (zero-order reaction kinetics), while first-order removal is dependent on concentration. Treatment efficiency is linearly related to area-adjusted removal and exponentially related to first-order removal at constant hydraulic loading rates (flow/area). Examination of previously published data from 35 natural AMD wetlands revealed that statistically significant correlations exist between several of the performance measures for both iron and manganese removal, but these correlations are potentially spurious because these measures are derived from, and are mathematical rearrangements of, the same operating data. The use of treatment efficiency as a measure of performance between wetlands is not recommended because it is a relative measure that does not account for influent concentration differences. Area-adjusted removal accounts for mass loading effects, but it fails to separate the flow and concentration components, which is necessary if removal is first-order. Available empirical evidence suggests that AMD pollutant removal is better described by first-order kinetics. If removal is first-order, the use of area-adjusted rates for determining the wetland area required for treating relatively low pollutant concentrations will result in undersized wetlands. The effects of concentration and flow rate on wetland area predictions for constant influent loading rates also depend on the kinetics of pollutant removal. If removal is zero-order, the wetland area required to treat a discharge to meet some target effluent concentration is a decreasing linear function of influent concentration (and an inverse function of flow rate). However, if removal is first-order, the required wetland area is a non-linear function of the relative influent concentration. Further research is needed for developing accurate first-order rate constants as a function of influent water chemistry and ecosystem characteristics in order to successfully apply the first-order removal model to the design of more effective AMD wetland treatment systems.  
  Address W.J. Tarutis Jr., Department of Natural Science, Lackawanna Junior College, 501 Vine Street, Scranton, PA 18509, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 0925-8574 ISBN Medium  
  Area Expedition Conference  
  Notes Feb.; Sizing and performance estimation of coal mine drainage wetlands; 0427766; Netherlands 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10596.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 10596 Serial 25  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: