toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Turek, M. url  openurl
  Title Recovery of NaCl from saline mine water in the ED-MSF system Type Journal Article
  Year 2000 Publication 8th World Salt Symposium, Vols 1 and 2 Abbreviated Journal  
  Volume Issue Pages 471-475  
  Keywords mine water treatment  
  Abstract A considerable part of water obtained by drainage of Polish coal-mines is saline which creates substantial ecological problems. The load of salt (mainly sodium chloride) amounts to 5 min t/year. Despite the utilisation of saline coalmine waters is considered to be the most adequate method of solving ecological problems caused by this kind of water in Poland there are only two installations utilising coal-mine waters and producing 100,000 t salt per year. In the case of the most concentrated waters, the so-called coal-mine brines, the method of concentrating by evaporation in twelve-stage expansion installation or vapour compression is applied, after which sodium chloride is manufactured. In the case of low salinity waters they are preconcentrated first by RO method. High energy consumption in above-mentioned methods of evaporation is a considerable restriction in the utilisation of coal-mine brines. An obstacle in the application of low energy evaporation processes, e.g. multi-stage flash, is the high concentration of calcium and sulphate ions in the coal-mine waters.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-0-444-50065-6 ISBN Medium  
  Area Expedition Conference  
  Notes May; Recovery of NaCl from saline mine water in the ED-MSF system; Isip:000088786800075; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17092 Serial 172  
Permanent link to this record
 

 
Author Groudev, S.N.; Georgiev, P.S.; Spasova, I.I.; Nicolova, M.N. url  openurl
  Title In situ treatment of mine waters by means of a permeable barrier Type Journal Article
  Year 2000 Publication Groundwater 2000 Abbreviated Journal  
  Volume Issue Pages 417-418  
  Keywords mine water treatment  
  Abstract Acid ground waters contaminated with radioactive elements (U, Ra, Th), toxic heavy metals (Cu, Zn, Cd, Mn, Fe), arsenic and sulphates were treated by means of a permeable barrier. The barrier was filled with a mixture of biodegradable solid organic substrates (spent mushroom compost, sawdust and cow manure) and was inhabited by a mixed microbial community consisting of sulphate-reducing bacteria and other metabolically interdependent microorganisms. An efficient removal of the pollutants was achieved by this barrier during the different climatic seasons, even at ambient temperatures close to degrees C. The microbial dissimilatory sulphate reduction and the sorption of pollutants by the organic matter in the barrier were the main processes involved in this removal.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes In situ treatment of mine waters by means of a permeable barrier; Isip:000088384300185; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8407 Serial 173  
Permanent link to this record
 

 
Author Mitchell, P. url  openurl
  Title Silica micro encapsulation: An innovative commercial technology for the treatment of metal and radionuclide contamination in water and soil Type Journal Article
  Year 2000 Publication Environmental Issues and Management of Waste in Energy and Mineral Production Abbreviated Journal  
  Volume Issue Pages 307-314  
  Keywords mine water treatment  
  Abstract Klean Earth Environmental Company (KEECO) has developed the Silica Micro Encapsulation (SME) technology to treat heavy metals and radionuclides in water and soil. Unlike conventional neutralization/precipitation methods, SME encapsulates the contaminants in a permanent silica matrix resistant to degradation under even extreme environmental conditions. Encapsulated metals and radionuclides are effectively immobilized, minimising the potential for environmental contamination and impacts on human or ecosystem health. The effectiveness of SME has been proven through independent reviews, laboratory and field trials and commercial contracts, and the technology can be used to control and prevent acid drainage and the transport of soluble metals from mine sites, tailings areas, landfills and industrial sites. Successful demonstrations in the treatment of sediments and in brownfield redevelopment, treatment of metal-finishing wastewaters, and control of hazardous, low-level, and mixed waste at DOE/DOD sites and commercial nuclear power plants have also been undertaken. This paper describes the reactions involved in the SME process, the methods by which SME chemicals are introduced to various media, and recent project applications relevant to the cost effective remediation and prevention of environmental problems arising from energy and mineral production.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Silica micro encapsulation: An innovative commercial technology for the treatment of metal and radionuclide contamination in water and soil; Isip:000088357300049; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17088 Serial 174  
Permanent link to this record
 

 
Author Zinck, J.M.; Aube, B.C. openurl 
  Title Optimization of lime treatment processes Type Journal Article
  Year 2000 Publication CIM Bull. Abbreviated Journal  
  Volume 93 Issue 1043 Pages 98-105  
  Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) acid mine drainage buffering lime Canada  
  Abstract Lime neutralization technology is widely used in Canada for the treatment of acid mine drainage and other acidic effluents. In many locations, improvements to the lime neutralization process are necessary to achieve a maximum level of sludge densification and stability. Conventional lime neutralization technology effectively removes dissolved metals to below regulated limits. However, the metal hydroxide and gypsum sludge generated is voluminous and often contains less than 5% solids. Despite recent improvements in the lime neutralization technology, each year, more than 6 700 000 m3 of sludge are generated by treatment facilities operated by the Canadian mining industry. Because lime neutralization is still seen as the best available approach for some sites, sludge production and stability are expected to remain as issues in the near future. Several treatment parameters significantly impact operating costs, effluent quality, sludge production and the geochemical stability of the sludge. Studies conducted both at CANMET and NTC have shown that through minor modifications to the treatment process, plant operators can experience a reduction in operating costs, volume of sludge generated, metal release to the environment and liability. This paper discusses how modifications in plant operation and design can reduce treatment costs and liability associated with lime treatment.  
  Address J.M. Zinck, CANMET, Mining and Mineral Sciences Lab., Natural Resources Canada, Ottawa, Ont., Canada  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0317-0926 ISBN Medium  
  Area Expedition Conference  
  Notes Optimization of lime treatment processes; 2291672; Canada 17; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17537 Serial 183  
Permanent link to this record
 

 
Author Younger, P.L. openurl 
  Title The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom Type Journal Article
  Year 2000 Publication Mine Water Env. Abbreviated Journal  
  Volume 19 Issue 2 Pages 84-97  
  Keywords wetlands SAPS aerobic wetlands acidity aerobic anaerobic compost iron metals passive reactive barrier water treatment  
  Abstract During the 1990s, passive treatment technology was introduced to the United Kingdom (UK). Early hesitancy on the part of regulators and practitioners was rapidly overcome, at least for net-alkaline mine waters, so that passive treatment is now the technology of choice for the long-term remediation of such discharges, wherever land availability is not unduly limiting. Six types of passive systems are now being used in the UK for mine water treatment: ¨ aerobic, surface flow wetlands (reed-beds); ¨ anaerobic, compost wetlands with significant surface flow; ¨ mixed compost / limestone systems, with predominantly subsurface flow (so-called Reducing and Alkalinity Producing Systems (RAPS)); ¨ subsurface reactive barriers to treat acidic, metalliferous ground waters; ¨ closed-system limestone dissolution systems for zinc removal from alkaline waters; ¨ roughing filters for treating ferruginous mine waters where land availability is limited. Each of these technologies is appropriate for a different kind of mine water, or for specific hydraulic circumstances. The degree to which each type of system can be considered “proven technology” corresponds to the order in which they are listed above. Many of these passive systems have become foci for detailed scientific research, as part of a $1.5M European Commission project running from 2000 to 2003.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1025-9112 ISBN Medium  
  Area Expedition Conference  
  Notes The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom; 1; FG 5 Abb., 1 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17448 Serial 198  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: