toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Angelos, M.A.F. url  openurl
  Title Rehabilitation options for a Finnish copper mine Type Journal Article
  Year 2000 Publication (down) International Conference on Practical Applications in Environmental Geotechnology Ecogeo 2000 Abbreviated Journal  
  Volume 204 Issue Pages 207-214  
  Keywords mine water treatment  
  Abstract The Luikonlahti Copper mine is located near the town of Kaavi in eastern Finland, approximately 30 km northwest of Outokumpu. The copper sulphide ore deposit formed the northern most part of the Outokumpu assemblage. During 15 years of operation, between 1968 and 1983, a total of 33 km of underground tunnels and 5.5 km of underground shafts were excavated in the mining of 6.85 million metric tons of ore. The underground working are now flooded with 2 million m(3) of contaminated water and three open pits contain over 1 million m(3) of contaminated water. Five separate waste rock piles exist and are actively forming acid mine drainage (AMD).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Rehabilitation options for a Finnish copper mine; Isip:000165636600026; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17620 Serial 171  
Permanent link to this record
 

 
Author Kuyucak, N. url  openurl
  Title Mining, the Environment and the Treatment of Mine Effluents Type Journal Article
  Year 1998 Publication (down) Int. J. Environ. Pollut. Abbreviated Journal  
  Volume 10 Issue 2 Pages 315-325  
  Keywords mine water treatment acid mine drainage high density sludge lime neutralization mining environment passive treatment sulfate-reducing bacteria  
  Abstract The environmental impact of mining on the ecosystem, including land, water and air, has become an unavoidable reality. Guidelines and regulations have been promulgated to protect the environment throughout mining activities from start-up to site decommissioning. In particular, the occurrence of acid mine drainage (AMD), due to oxidation of sulfide mineral wastes, has become the major area of concern to many mining industries during operations and after site decommissioning. AMD is characterized by high acidity and a high concentration of sulfates and dissolved metals. If it cannot be prevented or controlled, it must be treated to eliminate acidity, and reduce heavy metals and suspended solids before release to the environment. This paper discusses conventional and new methods used for the treatment of mine effluents, in particular the treatment of AMD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4352 ISBN Medium  
  Area Expedition Conference  
  Notes Mining, the Environment and the Treatment of Mine Effluents; Isi:000078420600009; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17477 Serial 56  
Permanent link to this record
 

 
Author Bhole, A.G. url  openurl
  Title Acid-Mine Drainage And Its Treatment Type Journal Article
  Year 1994 Publication (down) Impact of Mining on the Environment Abbreviated Journal  
  Volume Issue Pages 131-141  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid-Mine Drainage And Its Treatment; Isip:A1994ba02k00015; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8945 Serial 146  
Permanent link to this record
 

 
Author Swayze, G.A. url  openurl
  Title Imaging spectroscopy: A new screening tool for mapping acidic mine waste Type Journal Article
  Year 2000 Publication (down) ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1531-+  
  Keywords mine water treatment  
  Abstract Imaging spectroscopy is a relatively new remote sensing tool that provides a rapid method to screen entire mining districts for potential sources of surface acid drainage. An imaging spectrometer known as the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) measures light reflected from the surface in 224 spectral channels from 0.4 – 2.5 mum. Spectral data from this instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, Colorado. Here, the process of pyrite oxidation at the surface produces acidic water that is gradually neutralized as it drains away from mine waste, depositing a central jarosite zone surrounded by a jarosite + goethite zone, in turn surrounded by a goethite zone with a discontinuous hematite rim zone. Leaching tests show that pH is most acidic in the jarosite and jarosite+goethite zones and is near-neutral in the goethite zone. Measurements indicate that metals leach from minerals and amorphous materials in the jarosite + goethite and jarosite zones at concentrations 10 – 50 times higher than from goethite zone minerals. Goethite zones that fully encircle mine waste may indicate some attenuation of leachate metals and thus reduced metal loading to streams. The potential for impact by acidic drainage is highest where streams intersect the jarosite and jarosite + goethite zones. In these areas, metal-rich acidic surface runoff may flow directly into streams. The U.S. Environmental Protection Agency estimates (U.S. EPA, 1998) that mineral maps made from AVIRIS data at Leadville have accelerated remediation efforts by two years and saved over $2 million in cleanup costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Imaging spectroscopy: A new screening tool for mapping acidic mine waste; Isip:000169875500152; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17111 Serial 164  
Permanent link to this record
 

 
Author Campbell, A. url  openurl
  Title Mitigation of acid rock drainage at the Summitville Mine Superfund Site, Colorado, USA Type Journal Article
  Year 2000 Publication (down) ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1243-1250  
  Keywords mine water treatment  
  Abstract Numerous techniques for treating, controlling, and preventing acid rock drainage have been applied at the Summitville Mine Superfund Site. Challenging aspects of the remote mine site include the wide-spread occurrence of acid-generating soils and rocks, extensive surface and underground mine workings, and a cold and wet climate. Water treatment was an immediate necessity when the Government took control of the abandoned site in December of 1992. Subsequent reclamation activities have emphasized prevention and control of ARD to minimize future water treatment requirements. A combination of conventional, innovative, and experimental methods are being applied to successfully mitigate ARD at Summitville.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Mitigation of acid rock drainage at the Summitville Mine Superfund Site, Colorado, USA; Isip:000169875500124; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17110 Serial 165  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: