toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brown, M.M.; Atkinson, K.; Wilkins, C. openurl 
  Title Acid mine drainage amelioration by wetlands; study of a natural ecosystem Type Book Chapter
  Year 1994 Publication (up) Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 Abbreviated Journal  
  Volume Issue Pages 406  
  Keywords acid mine drainage; Cornwall England; England; Europe; field studies; Great Britain; pollution; remediation; surface water; United Kingdom; water quality; Western Europe; wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage amelioration by wetlands; study of a natural ecosystem; GeoRef; English; 2007-045255; International land reclamation and mine drainage conference; International conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 Approved no  
  Call Number CBU @ c.wolke @ 6630 Serial 431  
Permanent link to this record
 

 
Author Parker, G.; Noller, B.; Waite, T.D. isbn  openurl
  Title Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia Type Book Chapter
  Year 1999 Publication (up) Sudbury '99; Mining and the environment II; Conference proceedings Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage Australasia Australia buffers carbonate ion geochemistry Northern Territory Australia Pine Creek Geosyncline pollution pyrite sulfides surface water tropical environment water quality 22, Environmental geology  
  Abstract Surface waters in the Pine Creek Geosyncline (located in Australia's “Top End”, defined as the area of Australia north of 15 degrees S) are characterized by their low carbonate buffering capacity. These waters are buffered by silicate weathering and hence are slightly acidic, ranging in pH from 4.0 to 6.0. The Pine Creek Geosyncline contains most of the Top Ends' economic mineral deposits and characteristically shows no correlation between carbonate minerals and sulfidic orebodies hosting gold deposits (unlike uranium deposits). Thus many gold mines do not have ready access to carbonate minerals for buffering acid mine drainage (AMD). It is possible that locally available fast-weathering silicate minerals may be used to buffer AMD seeps. The buffering intensity of silicate minerals exceeds that of carbonate minerals, but their slow dissolution kinetics has ensured that these materials have received little attention in treating AMD. In addition, carbonate mineral dissolution is retarded when contacted with intense AMD solutions due to the formation of surface coatings of iron minerals. The lower pH range of silicate mineral dissolution may prevent the formation of such coatings. The Pine Creek Geosyncline consists of a complex geochemistry, and a number of fast-weathering silicate minerals have been noted in various areas. The difficulty in assessing such minerals for use in buffering AMD is the lack of kinetic data available under conditions prevalent AMD (i.e., low pH solutions saturated with aluminium and silica). This study sets out to evaluate the applicability of using such minerals to treat AMD surface seeps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Goldsack, D.E.; Belzile, N.; Yearwood, P.; Hall, G.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0886670470 Medium  
  Area Expedition Conference  
  Notes Assessment of the use of fast-weathering silicate minerals to buffer AMD in surface waters in tropical Australia; GeoRef; English; 2000-048644; Sudbury '99; Mining and the environment II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 36; illus. incl. 2 tables Approved no  
  Call Number CBU @ c.wolke @ 16594 Serial 273  
Permanent link to this record
 

 
Author Stewart, D.; Norman, T.; Cordery-Cotter, S.; Kleiner, R.; Sweeney, E.; Nelson, J.D. url  openurl
  Title Utilization of a ceramic membrane for acid mine drainage treatment Type Journal Article
  Year 1997 Publication (up) Tailings and Mine Waste '97 Abbreviated Journal  
  Volume Issue Pages 453-460  
  Keywords acid mine drainage; Black Hawk Colorado; Central City Colorado; ceramic materials; Colorado; cost; disposal barriers; geochemistry; Gilpin County Colorado; heavy metals; mines; organic compounds; pollution; remediation; surface water; tailings; United States; utilization; volatile organic compounds; volatiles; waste disposal mine water treatment  
  Abstract BASX Systems LLC has developed a treatment system based on ceramic membranes for the removal of heavy metals from an acid mine drainage stream. This stream also contained volatile organic compounds that were required to be removed prior to discharge to a Colorado mountain stream. The removal of heavy metals was greater than 99% in most cases. A decrease of 30% in chemicals required for treatment and a reduction by more than 75% in labor over a competing technology were achieved. These decreases were obtained for operating temperatures of less than 5 degrees C. This system of ceramic microfiltration is capable of treating many different types of acid mine waste streams for heavy metals removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 90-5410-857-6 ISBN Medium  
  Area Expedition Conference  
  Notes Jan 13-17; Utilization of a ceramic membrane for acid mine drainage treatment; Isip:A1997bg96u00050; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 8744 Serial 135  
Permanent link to this record
 

 
Author Younger, P.L.; Neal, C.; House, W.A.; Leeks, G.J.L.; Marker, A.H. openurl 
  Title The longevity of minewater pollution; a basis for decision-making U.K. fluxes to the North Sea; Land Ocean Interaction Study (LOIS); river basins research, the first two years Type Journal Article
  Year 1997 Publication (up) The Science of the Total Environment Abbreviated Journal  
  Volume 194-195 Issue Pages 457-466  
  Keywords acid mine drainage; acidic composition; acidification; Cornwall England; decision-making; degradation; discharge; England; Europe; Great Britain; hydrolysis; mines; planning; pollutants; pollution; remediation; retention; Scotland; soils; surface water; United Kingdom; Wales; waste disposal; water quality; Western Europe 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes The longevity of minewater pollution; a basis for decision-making U.K. fluxes to the North Sea; Land Ocean Interaction Study (LOIS); river basins research, the first two years; 1997-078352; Special issue References: 30; illus. Netherlands (NLD); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6259 Serial 193  
Permanent link to this record
 

 
Author Carlson, L.; Kumpulainen, S. openurl 
  Title Retention of harmful elements by ochreous precipitates of iron Type Journal Article
  Year 2001 Publication (up) Tutkimusraportti Geologian Tutkimuskeskus Abbreviated Journal  
  Volume - Issue 154 Pages 30-33  
  Keywords Surface water quality Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 9) geological abstracts: environmental geology (72 14 2) iron oxide precipitation chemistry sulfate arsenate heavy metal pH water pollution remediation  
  Abstract The capability of soil fines to fix harmful elements, e.g. heavy metals and arsenic, depends on specific surface area and other characteristics, such as surface charge. In the pH-range typical of natural waters (pH 5,5-7,5), the surfaces of fine-grained silicate particles and manganese oxides are negatively charged; consequently cations, such as heavy metals, fix effectively to them. The iron oxide surfaces are usually positively charged and typically fix anions, such as sulphate and arsenate. Retention of anions is especially extensive to precipitates formed from acid mine drainage (pH 2,5-5,0). For example, precipitates found at Paroistenjarvi mine, Finland, contain more than 70 g/kg of arsenic (dry matter). Adsorbed anions, e.g. sulphate, enhance the capacity of precipitate to fix heavy metal cations in low-pH environments.  
  Address L. Carlson, Tehtaankatu 25 A 4, Helsinki FIN-00150, Finland liisa.carlson@kolumbus.fi  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0781-4240 ISBN Medium  
  Area Expedition Conference  
  Notes Retention of harmful elements by ochreous precipitates of iron; 2392974; Oksidiset rautasaostumat haitallisten aineiden pidattajina. Finland 7; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17533 Serial 421  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: