toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Banks, D.; Younger, P.L.; Arnesen, R.-T.; Iversen, E.R.; Banks, S.B. url  openurl
  Title Mine-water chemistry: The good, the bad and the ugly Type Journal Article
  Year 1997 Publication Environ. Geol. Abbreviated Journal  
  Volume 32 Issue 3 Pages 157-174  
  Keywords mine water treatment mine-water chemistry acid mine drainage mine-water pollution mine-water treatment county-durham drainage movements Pollution and waste management non radioactive Groundwater problems and environmental effects mine drainage contamination hydrogeochemistry mine water drainage acid mine drainage  
  Abstract Contaminative mine drainage waters have become one of the major hydrogeological and geochemical problems arising from mankind's intrusion into the geosphere. Mine drainage waters in Scandinavia and the United Kingdom are of three main types: (1) saline formation waters; (2) acidic, heavy-metal-containing, sulphate waters derived from pyrite oxidation, and (3) alkaline, hydrogen-sulphide-containing, heavy-metal-poor waters resulting from buffering reactions and/or sulphate reduction. Mine waters are not merely to be perceived as problems, they can be regarded as industrial or drinking water sources and have been used for sewage treatment, tanning and industrial metals extraction. Mine-water problems may be addressed by isolating the contaminant source, by suppressing the reactions releasing contaminants, or by active or passive water treatment. Innovative treatment techniques such as galvanic suppression, application of bactericides, neutralising or reducing agents (pulverised fly ash-based grouts, cattle manure, whey, brewers' yeast) require further research.  
  Address D. Banks, Norges Geologiske Undersokelse, Postboks 3006 – Lade, N-7002 Trondheim, Norway  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0943-0105 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Oct.; Mine-water chemistry: The good, the bad and the ugly; 0337169; Germany 78; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10620.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 10620 Serial 18  
Permanent link to this record
 

 
Author Bochkarev, G.R.; Beloborodov, A.V.; Kondrat'ev, S.A.; Pushkareva, G.I. url  openurl
  Title Intensification of Aeration in treating Natural-Water and Mine Water Type Journal Article
  Year 1994 Publication J. Min. Sci. Abbreviated Journal  
  Volume 30 Issue 6 Pages 5  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1062-7391 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Nov; Intensification of Aeration in treating Natural-Water and Mine Water; New York: Consultants Bureau; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7033.pdf; Opac Approved no  
  Call Number CBU @ c.wolke @ 7033 Serial 15  
Permanent link to this record
 

 
Author Matlock, M.M.; Howerton, B.S.; Atwood, D.A. url  openurl
  Title Chemical precipitation of heavy metals from acid mine drainage Type Journal Article
  Year 2002 Publication Water Res Abbreviated Journal  
  Volume 36 Issue 19 Pages 4757-4764  
  Keywords mine water treatment BDET Acid mine drainage Water treatment Remediation Heavy metals Chemical precipitation Mercury Iron  
  Abstract The 1,3-benzenediamidoethanethiol dianion (BDET, known commercially as MetX) has been developed to selectively and irreversibly bind soft heavy metals from aqueous solution. In the present study BDET was found to remove >90% of several toxic or problematic metals from AMD samples taken from an abandoned mine in Pikeville, Kentucky. The concentrations of metals such as iron, may be reduced at pH 4.5 from 194 ppm to below 0.009 ppm. The formation of stoichiomietric BDET-metal precipitates in this process was confirmed using X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), and infrared spectroscopy (IR).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Nov.; Chemical precipitation of heavy metals from acid mine drainage; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/15005.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 15005 Serial 48  
Permanent link to this record
 

 
Author Davison, W. url  openurl
  Title Neutralizing Strategies For Acid Waters – Sodium And Calcium Products Generate Different Acid Neutralizing Capacities Type Journal Article
  Year 1988 Publication Water Res Abbreviated Journal  
  Volume 22 Issue 5 Pages 577-583  
  Keywords mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Neutralizing Strategies For Acid Waters – Sodium And Calcium Products Generate Different Acid Neutralizing Capacities; Wos:A1988p420900008; Times Cited: 8; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 9085 Serial 90  
Permanent link to this record
 

 
Author Aube, B.C. url  openurl
  Title Molybdenum treatment at Brenda Mines Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1113-1119  
  Keywords mine water treatment  
  Abstract Brenda Mines, located 22 km Northwest of Peachland in British Columbia, Canada was an open pit copper-molybdenum mine which closed in 1990 after 20 years of operation. The primary concern in Brenda's tailings and waste rock drainage is molybdenum at a concentration of approximately 3 mg/L.. The mine drainage is alkaline and contains little or none of the typically problematic heavy metals. Given that the waters downstream are used for municipal water supply and some irrigation, a discharge limit of 0.25 mg/L molybdenum was imposed with specific water quality guidelines in the receiving creek. A. review of all existing and potential molybdenum removal methods was undertaken prior to mine closure. The chosen process is a two-step iron co-precipitation with clarification and sand filtration at a slightly acidic pH. A 4,000 usgpm (912 m(3)/h) treatment plant was constructed and commissioned in 1998, at a cost of $10.5M. The successful removal of molybdenum from the drainage water is explained with details on some design innovations and operational challenges encountered during plant start-up. Investigated sludge disposal options are discussed although the long term disposal scenario has not yet been finalised.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Molybdenum treatment at Brenda Mines; Isip:000169875500109; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17104 Serial 167  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: