toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Becker, G.; Wade, S.; Riggins, J.D.; Cullen, T.B.; Venn, C.; Hallen, C.P. openurl 
  Title Effect of Bast Mine treatment discharge on Big Mine Run AMD and Mahanoy Creek in the Western Middle Anthracite Field of Pennsylvania Type Journal Article
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords abandoned mines acid mine drainage anthracite Ashland Pennsylvania Bast Mine Big Mine Run coal coal fields coal mines Columbia County Pennsylvania discharge geochemistry hydrochemistry hydrology Mahanoy Creek mines Northumberland County Pennsylvania Pennsylvania pollution rivers and streams Schuylkill County Pennsylvania sedimentary rocks surface water United States water quality water treatment Western Middle Anthracite Field 22 Environmental geology 02A General geochemistry  
  Abstract The Bast Mine (reopened in 2001) and Big Mine are two anthracite coal mines near Ashland, PA, that were abandoned in the 1930's and that are now causing drastic and opposite effects on the water quality of the streams originating from them. To quantify these effects, multiple samples were taken at 5 different sites: 3 along Big Mine Run and 2 from Mahanoy Creek (1 upstream and 1 downstream of the confluence with Big Mine Run). At each site, one set of the samples was treated with nitric acid for metals survey, one set was acidified with sulfuric acid for nitrate preservation, one set was filtered for sulfate and phosphate tests, and one set was unaltered. Measurements of pH, TDS, dissolved oxygen, and temperature were made in the field. Alkalinity, acidity, hardness, nitrates, orthophosphates and sulfates were analyzed using Hach procedures. Selected metals (Fe, Ni, Mg, Ca, Cu, Zn, Hg, Pb) were analyzed utilizing flame atomic absorption spectroscopy. Drainage from the Bast Mine is actively treated with hydrated lime before the water is piped down to Big Mine Run. pH and alkalinity values were much higher at the outflow compared to those in the water with which it merged. The two waters could be visibly distinguished some distance downstream. pH values decreased, sulfate and dissolved iron increased and alkalinity was reduced to zero until the confluence with Mahanoy Creek. The high alkalinity, turbidity, TDS and calcium values in Mahanoy Creek were somewhat reduced downstream of the confluence with the much lower discharge Big Mine Run.  
  Address  
  Corporate Author Thesis  
  Publisher Abstracts with Programs - Geological Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Geological Society of America, Northeastern Section, 40th annual meeting Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 2006-042616; Geological Society of America, Northeastern Section, 40th annual meeting, Saratoga Springs, NY, United States, March 14-16, 2005; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 16455 Serial 459  
Permanent link to this record
 

 
Author Al-Abed, S.; Allen, D.; Bates, E.; Reisman, D. openurl 
  Title Lime treatment lagoons technology for treating acid mine drainage from two mining sites Type Journal Article
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; case studies; Copper Mine; drainage; geochemistry; heavy metals; hydrochemistry; Leviathan Mine; mining; Nevada; pH; pollutants; pollution; precipitation; remediation; runoff; surface water; Tennessee; United States; waste lagoons; water treatment 22 Environmental geology; 02B Hydrochemistry  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Hardrock mining 2002; issues shaping the industry Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 2007-046170; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5621 Serial 487  
Permanent link to this record
 

 
Author Hause, D.R.; Willison, L.R. openurl 
  Title Deep Mine Abandonment Sealing and Underground Treatment to Prelude Acid Mine Drainage Type Journal Article
  Year 1986 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords in situ treatment sealing phosphate rock dust mine water acid mine water treatment beach area  
  Abstract Beth Energy's Mine 105W is located in Barbour County, West Virginia, near Buckhannon. The mine was opened by drifts updip into the Pittsburgh Seam in 1971 and operated until June, 1982. Most of the water which enters Mine 105W percolates down from previously mined areas in the Redstone Seam, Mine 101, which generally lies 38 feet above the Pittsburgh Seam. The quality of this water is good as it enters Mine 105W. While operating, the Mine 105W water was segregated by pumping. The bulk of the water was collected in sumps near the main area of infiltration from the Redstone Seam and was pumped to Gnatty Creek Portal where, because of the quality, it was minimally treated and discharged. The remainder of the water flowed to the original West Portal where it was occasionally treated with lime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings, 7th West Virginia Surface Mine Drainage Task Force Symposium Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 2; als Datei vorhanden 13 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17350 Serial 359  
Permanent link to this record
 

 
Author Macklin, M.G. url  openurl
  Title A geomorphological approach to the management of rivers contaminated by metal mining Type Journal Article
  Year 2006 Publication Geomorphology Abbreviated Journal  
  Volume 79 Issue 3-4 Pages 423-447  
  Keywords mine water treatment  
  Abstract As the result of current and historical metal mining, river channels and floodplains in many parts of the world have become contaminated by metal-rich waste in concentrations that may pose a hazard to human livelihoods and sustainable development. Environmental and human health impacts commonly arise because of the prolonged residence time of heavy metals in river sediments and alluvial soils and their bioaccumulatory nature in plants and animals. This paper considers how an understanding of the processes of sediment-associated metal dispersion in rivers, and the space and timescales over which they operate, can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by current and historical metal mining. A geomorphological approach to the management of rivers contaminated by metals is outlined and four emerging research themes are highlighted and critically reviewed. These are: (1) response and recovery of river systems following the failures of major tailings dams; (2) effects of flooding on river contamination and the sustainable use of floodplains; (3) new developments in isotopic fingerprinting, remote sensing and numerical modelling for identifying the sources of contaminant metals and for mapping the spatial distribution of contaminants in river channels and floodplains; and (4) current approaches to the remediation of river basins affected by mining, appraised in light of the European Union's Water Framework Directive (2000/60/EC). Future opportunities for geomorphologically-based assessments of mining-affected catchments are also identified. (c) 2006 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) A geomorphological approach to the management of rivers contaminated by metal mining; Wos:000241084500014; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16934 Serial 105  
Permanent link to this record
 

 
Author Skousen, J.; Rose, A.; Geidel, G.; Foreman, J.; Evans, R.; Hellier, W. openurl 
  Title A handbook of technologies for avoidance and remediation of acid mine drainage Type RPT
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage bioremediation coal mines constructed wetlands disposal barriers ion exchange mines pollution pumping recharge remediation reverse osmosis surface water technology waste disposal waste management water treatment wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Acid Drainage Technology Initiative, A. and R.W.G.U.S. Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) A handbook of technologies for avoidance and remediation of acid mine drainage; 2001-074240; GeoRef; English; References: 72; illus. incl. 5 tables West Virginia University, National Mine Land Reclamation Center, Morgantown, WV, United States Approved no  
  Call Number CBU @ c.wolke @ 16615 Serial 245  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: