toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Banks, S.B. openurl 
  Title The Coal Authority Minewater Treatment Programme: An update on the performance of operational schemes Type Journal Article
  Year 2003 Publication Land Contam. Reclam. Abbreviated Journal  
  Volume 11 Issue 2 Pages 161-164  
  Keywords Wetlands and estuaries Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 8) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) constructed wetland mine drainage water treatment pollutant removal United Kingdom  
  Abstract The performance of mine water treatment schemes, operated under the Coal Authority's national Minewater Treatment Programme, is summarised. Most schemes for which data are available perform successfully and remove over 90% iron. Mean area-adjusted iron removal rates for reedbed components of treatment schemes, range from 1.5 to 5.5 g Fe/m2, with percentage iron removal rates ranging from 68% to 99%. In the majority of cases, calculated area-adjusted removal rates are limited by influent iron loadings, and the empirical sizing criterion for aerobic wetlands, based on American removal rates of 10 g Fe/m2day, remains a valuable tool in the initial stages of treatment system design and estimation of land area requirements. Where a number of schemes have required modification after becoming operational, due consideration must always be given to the potential for dramatic increases in influent iron loadings, and to how the balance between performance efficiency and aesthetic appearance can best be achieved. Continual review and feedback on the performance of treatment systems, and the problems encountered during design implementation, will enhance the efficiency and effectiveness of the Minewater Treatment Programme within the UK.  
  Address S.B. Banks, Scott Wilson Kirkpatrick/Co. Ltd., Rose Hill West, Chesterfield S40 1JF, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0513 ISBN Medium  
  Area Expedition Conference  
  Notes (down) The Coal Authority Minewater Treatment Programme: An update on the performance of operational schemes; 2530421; United-Kingdom 4; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17519 Serial 467  
Permanent link to this record
 

 
Author Ballivy, G.; Bienvenu, L. openurl 
  Title Stabilisation des rejets miniers a l'aide de rejets de cimenterie. Stabilization of mining wastes using cement factory wastes Activites de recherche du Ministere des Ressources Naturelles du Quebec sur le drainage minier acide; rapport 1997-1998. Research activities of the Quebec Natural Resources Ministry on acid mine drainage; report 1997-1998 Type RPT
  Year 1998 Publication Abbreviated Journal  
  Volume Rn 98-5034 Issue Pages  
  Keywords abandoned mines; acid mine drainage; Canada; cement materials; construction materials; cost; disposal barriers; Eastern Canada; environmental effects; industrial waste; mines; mining; pollution; Quebec; reclamation; remediation; stabilization; waste disposal 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Stabilisation des rejets miniers a l'aide de rejets de cimenterie. Stabilization of mining wastes using cement factory wastes Activites de recherche du Ministere des Ressources Naturelles du Quebec sur le drainage minier acide; rapport 1997-1998. Research activities of the Quebec Natural Resources Ministry on acid mine drainage; report 1997-1998; 1999-012051; GeoRef; French; 1203-1275 illus. incl. 1 table Approved no  
  Call Number CBU @ c.wolke @ 6127 Serial 468  
Permanent link to this record
 

 
Author Wolkersdorfer, C. url  openurl
  Title Mine water tracer tests as a basis for remediation strategies Type Journal Article
  Year 2005 Publication Chemie der Erde Abbreviated Journal  
  Volume 65 Issue Suppl. 1 Pages 65-74  
  Keywords Mine water treatment Stratification Convection First flush Tracer tests Microspheres Reactive transport Groundwater problems and environmental effects Pollution and waste management non radioactive acid mine drainage remediation  
  Abstract Mining usually causes severe anthropogenic changes by which the ground- or surface water might be significantly polluted. One of the main problems in the mining industry are acid mine drainage, the drainage of heavy metals, and the prediction of mine water rebound after mine closure. Therefore, the knowledge about the hydraulic behaviour of the mine water within the flooded mine might significantly reduce the costs of mine closure and remediation. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, but only few tracer tests in flooded mines have been published so far. Most tracer tests linked to mine water problems were related to either pollution of the aquifer or radioactive waste disposal and not the mine water itself. Applying the results of the test provides possibilities f or optimizing the outcome of the source-path-target methodology and therefore diminishes the costs of remediation strategies. Consequently, prior to planning of remediation strategies or numerical simulations, relatively cheap and reliable results for decision making can be obtained via a well conducted tracer test. < copyright > 2005 Elsevier GmbH. All rights reserved.  
  Address C. Wolkersdorfer, TU Bergakademie Freiberg, Lehrstuhl fur Hydrogeologie, 09596 Freiberg, Sachsen, Germany c.wolke@tu-freiberg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2819 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Sep 19; Mine water tracer tests as a basis for remediation strategies; 2767887; Germany 34; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17499 Serial 34  
Permanent link to this record
 

 
Author Ntengwe, F.W. url  openurl
  Title An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia Type Journal Article
  Year 2005 Publication Phys. Chem. Earth Abbreviated Journal  
  Volume 30 Issue 11-16 Spec. Iss. Pages 726-734  
  Keywords mine water treatment Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) wastewater pollution control acid mine drainage Hyacinthus Zambia Southern Africa Sub Saharan Africa Africa Eastern Hemisphere World  
  Abstract The wastewaters coming from mining operations usually have low pH (acidic) values and high levels of metal pollutants depending on the type of metals being extracted. If unchecked, the acidity and metals will have an impact on the surface water. The organisms and plants can adversely be affected and this renders both surface and underground water unsuitable for use by the communities. The installation of a treatment plant that can handle the wastewaters so that pH and levels of pollutants are reduced to acceptable levels provides a solution to the prevention of polluting surface and underground waters and damage to ecosystems both in water and surrounding soils. The samples were collected at five points and analyzed for acidity, total suspended solids, and metals. It was found that the pH fluctuated between pH 2 when neutralization was forgotten and pH 11 when neutralization took place. The levels of metals that could cause impacts to the water ecosystem were found to be high when the pH was low. High levels of metals interfere with multiplication of microorganisms, which help in the natural purification of water in stream and river bodies. The fish and hyacinth placed in water at the two extremes of pH 2 and pH 11 could not survive indicating that wastewaters from mining areas should be adequately treated and neutralized to pH range 6-9 if life in natural waters is to be sustained. < copyright > 2005 Elsevier Ltd. All rights reserved.  
  Address F.W. Ntengwe, Copperbelt University, School of Technology, P.O. Box 21692, Kitwe, Zambia fntengwe@cbu.ac.zm  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Review; An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia; 2790318; United-Kingdom 23; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10301.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17497 Serial 24  
Permanent link to this record
 

 
Author Benner, S.G.; Blowes, D.W.; Ptacek, C.J. url  openurl
  Title A full-scale porous reactive wall for prevention of acid mine drainage Type Journal Article
  Year 1997 Publication Ground Water Monitoring and Remediation Abbreviated Journal  
  Volume 17 Issue 4 Pages 99-107  
  Keywords acid mine drainage alkalinity bacteria Canada case studies concentration dissolved materials drainage Eastern Canada ground water mines observation wells Ontario permeability pH pollution porous materials recharge reduction remediation site exploration Sudbury District Ontario sulfate ion surface water waste disposal water pollution Groundwater quality Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 11) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) groundwater protection permeable barrier acid mine drainage aquifer groundwater acid min drainage contamination permeable barrier groundwater protection permeable barrier acid mine drainage aquifer Canada, Ontario, Sudbury, Nickel Rim  
  Abstract The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problem is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water existing the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentration decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L, pH increases from 5.8 to 7.0; and alkalinity (as CaCO<inf>3</inf>) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.  
  Address Dr. S.G. Benner, Earth Sciences Department, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1069-3629 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Review; A full-scale porous reactive wall for prevention of acid mine drainage; 0337197; United-States 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10621.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17555 Serial 67  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: