toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Whitehead, P.G. url  openurl
  Title Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project Type Journal Article
  Year 2005 Publication Science of the Total Environment Abbreviated Journal  
  Volume 338 Issue 1-2 Pages 15-21  
  Keywords mine water treatment  
  Abstract Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheat Jane Mine in Cornwall, UK. The plant consists of three separate systems; each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pre-treatment utilised to increase the pH of the influent minewater (pH<4): lime-dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pre-treatment. The Wheal Jane pilot plant offered a unique facility and a major research project was established to evaluate the pilot plant and study in detail the biological mechanisms and the geochemical and physical processes that control passive treatment systems. The project has led to data, knowledge, models and design criteria for the future design, planning and sustainable management of passive treatment systems. A multidisciplinary team of scientists and managers from the U.K. universities, the Environment Agency and the Mining Industry has been put together to obtain the maximum advantage from the excellent facilities facility at Wheal Jane. (C) 2004 Elseaier B.V All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project; Wos:000227130400003; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16972 Serial 116  
Permanent link to this record
 

 
Author Olaniran, A.O. url  openurl
  Title Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes Type Journal Article
  Year 2006 Publication Chemosphere Abbreviated Journal  
  Volume 63 Issue 4 Pages 600-608  
  Keywords mine water treatment  
  Abstract The accumulation of dichloroethenes (DCEs) as dominant products of microbial reductive dechlorination activity in soil and water represent a significant obstacle to the application of bioremediation as a remedial option for chloroethenes in many contaminated systems. In this study, the effects of biostimulation and/or bioaugmentation on the biodegradation of cis- and trans-DCE in soil and water samples collected from contaminated sites in South Africa were evaluated in order to deter-mine the possible bioremediation option for these compounds in the contaminated sites. Results from this study indicate that cis- and trans-DCE were readily degraded to varying degrees by natural microbial populations in all the soil and water samples tested, with up to 44% of cis-DCE and 41% of trans-DCE degraded in the untreated soil and water samples in two weeks. The degradation rate constants ranged significantly (P < 0.05) between 0.0938 and 0.560 wk(-1) and 0.182 and 0.401 wk(-1), for cis- and trans-DCE, respectively, for the various treatments employed. A combination of biostimulation and bioaugmentation significantly increased the biodegradation of both compounds within two weeks; 14% for cis-DCE and 18% for trans-DCE degradation, above those observed in untreated soil and water samples. These findings support the use of a combination of biostimulation and bioaugmentation for the efficient biodegradation of these compounds in contaminated soil and water. In addition, the results clearly demonstrate that while naturally occurring microorganisms are capable of aerobic biodegradation of cis- and trans-DCE, biotransformation may be affected by several factors, including isomer structure, soil type, and the amount of nutrients available in the water and soil. (c) 2005 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes; Wos:000237379500007; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16936 Serial 111  
Permanent link to this record
 

 
Author Bernoth, L.; Firth, I.; McAllister, P.; Rhodes, S. openurl 
  Title Biotechnologies for Remediation and Pollution Control in the Mining Industry Type Journal Article
  Year 2000 Publication Miner. Metall. Process. Abbreviated Journal  
  Volume 17 Issue 2 Pages 105-111  
  Keywords bioremediation pollution control soil contamination solvents oils diesel hydrocarbons cyanide acid rock drainage microbial mats manganese bioremediation oxidation drainage removal water algae  
  Abstract As biotechnologies emerge from laboratories into main-stream application, the benefits they, offer are judged against competing technologies and business criteria. Bioremediation technologies have passed this test and are now widely used for the remediation of contaminated soils and ground waters. Bioremediation includes several distinct techniques that are used for the treatment of excavated soil and includes other techniques that are used for in situ applications. They play an important and growingrole in the mining industry for cost-effective waste management and site remediation. Most applications have been for petroleum contaminants, but advances continue to be made in the treatment of more difficult organ ic and inorganic species. This paper discusses the role of biotechnologies in remediation and pollution control from a mining-industry perspective. Several case studies are presented, including the land application of oily wastewater from maintenance workshops, the composting of hydrocarbon-contaminated soils and sludges, the bioventing of hydrocarbon solvents, the intrinsic bioremediation of diesel hydrocarbons, the biotreatment of cyanide in water front a gold mine, and the removal of manganese from acidic mine drainage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0747-9182 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Biotechnologies for Remediation and Pollution Control in the Mining Industry; Isi:000087094600005; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17307 Serial 450  
Permanent link to this record
 

 
Author Fricke, J.; Blickwedel, R.; Hagerty, P. openurl 
  Title Biotreatment of metal mine waste waters; case histories Type Journal Article
  Year 1997 Publication Open-File Report – US Geological Survey Abbreviated Journal  
  Volume Of 97-0496 Issue Pages 25  
  Keywords abandoned mines acid mine drainage bacteria bioremediation chemical composition concentration efficiency geochemistry metals mines pollution remediation USGS waste water water quality water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0196-1497 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Biotreatment of metal mine waste waters; case histories; 1; GeoRef: 98-68755 160101 / € 0; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9627 Serial 375  
Permanent link to this record
 

 
Author Kringel, R. openurl 
  Title Untersuchungen zur Verminderung von Auswirkungen der Pyritoxidation in Abraumsedimenten des Rheinischen Braunkohlenreviers auf die Chemie des Grundwassers Type Journal Article
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages 178  
  Keywords Braunkohlentagebau Pyrit Oxidation Grubenwasser Gewässerversauerung Neutralisation <Chemie>  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 3-931713-52-0 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Bochum, Univ., Diss.; Untersuchungen zur Verminderung von Auswirkungen der Pyritoxidation in Abraumsedimenten des Rheinischen Braunkohlenreviers auf die Chemie des Grundwassers; Darmstadt : DDD, Dr. und Verl.; Bochum, Univ., Diss.; Opac Approved no  
  Call Number CBU @ c.wolke @ 6941 Serial 326  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: