toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hause, D.R.; Willison, L.R. openurl 
  Title Deep Mine Abandonment Sealing and Underground Treatment to Prelude Acid Mine Drainage Type Journal Article
  Year 1986 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords in situ treatment sealing phosphate rock dust mine water acid mine water treatment beach area  
  Abstract Beth Energy's Mine 105W is located in Barbour County, West Virginia, near Buckhannon. The mine was opened by drifts updip into the Pittsburgh Seam in 1971 and operated until June, 1982. Most of the water which enters Mine 105W percolates down from previously mined areas in the Redstone Seam, Mine 101, which generally lies 38 feet above the Pittsburgh Seam. The quality of this water is good as it enters Mine 105W. While operating, the Mine 105W water was segregated by pumping. The bulk of the water was collected in sumps near the main area of infiltration from the Redstone Seam and was pumped to Gnatty Creek Portal where, because of the quality, it was minimally treated and discharged. The remainder of the water flowed to the original West Portal where it was occasionally treated with lime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings, 7th West Virginia Surface Mine Drainage Task Force Symposium Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 2; als Datei vorhanden 13 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17350 Serial 359  
Permanent link to this record
 

 
Author Macklin, M.G. url  openurl
  Title A geomorphological approach to the management of rivers contaminated by metal mining Type Journal Article
  Year 2006 Publication Geomorphology Abbreviated Journal  
  Volume 79 Issue 3-4 Pages 423-447  
  Keywords mine water treatment  
  Abstract As the result of current and historical metal mining, river channels and floodplains in many parts of the world have become contaminated by metal-rich waste in concentrations that may pose a hazard to human livelihoods and sustainable development. Environmental and human health impacts commonly arise because of the prolonged residence time of heavy metals in river sediments and alluvial soils and their bioaccumulatory nature in plants and animals. This paper considers how an understanding of the processes of sediment-associated metal dispersion in rivers, and the space and timescales over which they operate, can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by current and historical metal mining. A geomorphological approach to the management of rivers contaminated by metals is outlined and four emerging research themes are highlighted and critically reviewed. These are: (1) response and recovery of river systems following the failures of major tailings dams; (2) effects of flooding on river contamination and the sustainable use of floodplains; (3) new developments in isotopic fingerprinting, remote sensing and numerical modelling for identifying the sources of contaminant metals and for mapping the spatial distribution of contaminants in river channels and floodplains; and (4) current approaches to the remediation of river basins affected by mining, appraised in light of the European Union's Water Framework Directive (2000/60/EC). Future opportunities for geomorphologically-based assessments of mining-affected catchments are also identified. (c) 2006 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) A geomorphological approach to the management of rivers contaminated by metal mining; Wos:000241084500014; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16934 Serial 105  
Permanent link to this record
 

 
Author Waring, C.L.; Taylor, J.R. openurl 
  Title Type Book Whole
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages 663-665  
  Keywords in-situ mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.  
  Language Summary Language Original Title  
  Series Editor Series Title Mine, Water & Environment Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) A new technique for building in-situ sub-surface hydrologic barriers: NBT; 1; AMD ISI | Wolkersdorfer; 3 Abb., 1 Tab. Approved no  
  Call Number CBU @ c.wolke @ 9947 Serial 218  
Permanent link to this record
 

 
Author Tempel, R.N. url  openurl
  Title A quantitative approach to optimize chemical treatment of acid drainage using geochemical reaction path modeling methods: Climax Mine, Colorado Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1053-1058  
  Keywords mine water treatment  
  Abstract The Climax Mine, near Leadville, Colorado treats acid drainage in a lime neutralization chemical treatment system. Chemical treatment has been successful in reducing the concentration of metals to below surface water discharge effluent limits, but lime usage has not been optimized. A geochemical modeling approach has been developed to increase the efficiency of lime neutralization. The modeling approach incorporates two steps: (1)calibration, and (2) calculation of amount of lime needed to increase pH and remove metals. Results of our work quantify the lime treatment process and improve our ability to predict overall water quality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) A quantitative approach to optimize chemical treatment of acid drainage using geochemical reaction path modeling methods: Climax Mine, Colorado; Isip:000169875500102; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17102 Serial 168  
Permanent link to this record
 

 
Author Gobla, M.J. url  openurl
  Title A rapid response to cleanup – Gilt Edge Superfund Site, South Dakota Type Journal Article
  Year 2002 Publication Tailings and Mine Waste '02 Abbreviated Journal  
  Volume Issue Pages 421-425  
  Keywords mine water treatment  
  Abstract The Gilt Edge gold mine is an acid drainage site that has been put on an accelerated closure schedule. The mine ceased activities in 1999 when Dakota Mining Corporation declared bankruptcy forcing the State of South Dakota to immediatly assume water treatment operations. Evaluation of conceptual closure plan options and cost estimates led the State of South Dakota to a decision to seek Federal assistance. The site has quickly moved into reclamation mode for the principal contamination source, the Ruby waste-rock dump. Designs and specifications for capping the Ruby waste-rock dump were prepared while Superfund listing was pursued. In October of 2000, mobilization of the first reclamation contractor began and by December the site was added to the National Priorities List. Capping the waste-rock dump will address a major acid drainage source. Water treatment requirements are expected to decline as conventional methods such as diverting clean water, backfilling, grading, capping, limestone neutralization, and revegetation are implemented. Acid seepage from underground workings, steep highwalls, and some pit backfills will remain. Major field trials of emerging technologies are nearing completion and some are showing promising results. Carbon reduction in a pit lake, and pyrite microencapsulation on simulated waste dumps, are showing initial success. Their application may minimize or eliminate the need for long-term active water treatment which has been a long sought goal for major acid rock drainage sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) A rapid response to cleanup – Gilt Edge Superfund Site, South Dakota; Isip:000175560600055; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17038 Serial 160  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: