toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ntengwe, F.W. url  openurl
  Title An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia Type Journal Article
  Year 2005 Publication Phys. Chem. Earth Abbreviated Journal  
  Volume 30 Issue 11-16 Spec. Iss. Pages 726-734  
  Keywords (down) mine water treatment Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) wastewater pollution control acid mine drainage Hyacinthus Zambia Southern Africa Sub Saharan Africa Africa Eastern Hemisphere World  
  Abstract The wastewaters coming from mining operations usually have low pH (acidic) values and high levels of metal pollutants depending on the type of metals being extracted. If unchecked, the acidity and metals will have an impact on the surface water. The organisms and plants can adversely be affected and this renders both surface and underground water unsuitable for use by the communities. The installation of a treatment plant that can handle the wastewaters so that pH and levels of pollutants are reduced to acceptable levels provides a solution to the prevention of polluting surface and underground waters and damage to ecosystems both in water and surrounding soils. The samples were collected at five points and analyzed for acidity, total suspended solids, and metals. It was found that the pH fluctuated between pH 2 when neutralization was forgotten and pH 11 when neutralization took place. The levels of metals that could cause impacts to the water ecosystem were found to be high when the pH was low. High levels of metals interfere with multiplication of microorganisms, which help in the natural purification of water in stream and river bodies. The fish and hyacinth placed in water at the two extremes of pH 2 and pH 11 could not survive indicating that wastewaters from mining areas should be adequately treated and neutralized to pH range 6-9 if life in natural waters is to be sustained. < copyright > 2005 Elsevier Ltd. All rights reserved.  
  Address F.W. Ntengwe, Copperbelt University, School of Technology, P.O. Box 21692, Kitwe, Zambia fntengwe@cbu.ac.zm  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Review; An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia; 2790318; United-Kingdom 23; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10301.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17497 Serial 24  
Permanent link to this record
 

 
Author Juby, G.J.G.; Schutte, C.F. url  openurl
  Title Membrane Life in a Seeded-slurry Reverse Osmosis System Type Journal Article
  Year 2000 Publication Water Sa Abbreviated Journal  
  Volume 26 Issue 2 Pages 239-248  
  Keywords (down) mine water treatment desalination  
  Abstract Membrane replacement can be a major operating cost of a membrane plant. During the development of a novel desalination technique (the SPARRO process) for treating calcium sulphate scaling mine waters the expected life of tubular cellulose acetate membranes operating in the seeded-slurry mode was investigated.During four operating phases of the plant over a five-year period more than 9 000 h of operating data were obtained. Performance data showed that each operating phase was dominated by either membrane fouling or membrane hydrolysis. Membrane fouling was observed to begin near the front-end of the membrane stack and proceed towards the back. Hydrolysis, on the other hand, occurred first in the tail end of the stack and moved backwards towards the Front end modules. Although two detailed membrane autopsies were carried out no definitive statement can be made in respect of the causes of either membrane hydrolysis or membrane fouling. However, suggestions are presented to explain the observed fouling phenomenon in relation to the turbidity of the pretreated feed water and the presence of chlorine. It is proposed that the presence of radioactive isotopes in the mine water which become concentrated in the process contributes to the observed membrane hydrolysis. A membrane life of up to two years is projected for an improved pretreatment arrangement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4738 ISBN Medium  
  Area Expedition Conference  
  Notes Membrane Life in a Seeded-slurry Reverse Osmosis System; Isi:000087101400013; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9715.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9715 Serial 8  
Permanent link to this record
 

 
Author Tarutis Jr, W.J.; Stark, L.R.; Williams, F.M. url  openurl
  Title Sizing and performance estimation of coal mine drainage wetlands Type Journal Article
  Year 1999 Publication Ecological Engineering Abbreviated Journal  
  Volume 12 Issue 3-4 Pages 353-372  
  Keywords (down) mine water treatment coal mine drainage constructed wetlands efficiency first-order removal loading rate removal kinetics sizing zero-order removal constructed wetlands water-quality iron kinetics removal model phosphorus retention mechanism design Wetlands and estuaries geographical abstracts: physical geography hydrology (71 6 8) acid mine drainage effluent performance assessment remediation wetland management  
  Abstract The effectiveness of wetland treatment of acid mine drainage (AMD) was assessed using three measures of performance: treatment efficiency, area-adjusted removal, and first-order removal. Mathematical relationships between these measures were derived from simple kinetic equations. Area-adjusted removal is independent of pollutant concentration (zero-order reaction kinetics), while first-order removal is dependent on concentration. Treatment efficiency is linearly related to area-adjusted removal and exponentially related to first-order removal at constant hydraulic loading rates (flow/area). Examination of previously published data from 35 natural AMD wetlands revealed that statistically significant correlations exist between several of the performance measures for both iron and manganese removal, but these correlations are potentially spurious because these measures are derived from, and are mathematical rearrangements of, the same operating data. The use of treatment efficiency as a measure of performance between wetlands is not recommended because it is a relative measure that does not account for influent concentration differences. Area-adjusted removal accounts for mass loading effects, but it fails to separate the flow and concentration components, which is necessary if removal is first-order. Available empirical evidence suggests that AMD pollutant removal is better described by first-order kinetics. If removal is first-order, the use of area-adjusted rates for determining the wetland area required for treating relatively low pollutant concentrations will result in undersized wetlands. The effects of concentration and flow rate on wetland area predictions for constant influent loading rates also depend on the kinetics of pollutant removal. If removal is zero-order, the wetland area required to treat a discharge to meet some target effluent concentration is a decreasing linear function of influent concentration (and an inverse function of flow rate). However, if removal is first-order, the required wetland area is a non-linear function of the relative influent concentration. Further research is needed for developing accurate first-order rate constants as a function of influent water chemistry and ecosystem characteristics in order to successfully apply the first-order removal model to the design of more effective AMD wetland treatment systems.  
  Address W.J. Tarutis Jr., Department of Natural Science, Lackawanna Junior College, 501 Vine Street, Scranton, PA 18509, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8574 ISBN Medium  
  Area Expedition Conference  
  Notes Feb.; Sizing and performance estimation of coal mine drainage wetlands; 0427766; Netherlands 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10596.pdf; Geobase Approved no  
  Call Number CBU @ c.wolke @ 10596 Serial 25  
Permanent link to this record
 

 
Author Dugan, P.R. doi  openurl
  Title Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions Type Journal Article
  Year 1987 Publication Biotechnol. Bioeng. Abbreviated Journal  
  Volume 29 Issue 1 Pages 6  
  Keywords (down) mine water treatment Chemistry Biochemistry and Biotechnology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3592 ISBN Medium  
  Area Expedition Conference  
  Notes Jan; Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions; New York, NY [u.a.] : Wiley; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7028.pdf; Opac Approved no  
  Call Number CBU @ c.wolke @ 7028 Serial 80  
Permanent link to this record
 

 
Author Van Hille, R.P.; Boshoff, G.A.; Rose, P.D.; Duncan, J.R. url  openurl
  Title A continuous process for the biological treatment of heavy metal contaminated acid mine water Type Journal Article
  Year 1999 Publication Resour. Conserv. Recycl. Abbreviated Journal  
  Volume 27 Issue 1-2 Pages 157-167  
  Keywords (down) mine water treatment biological treatment heavy metal acid mine water alkaline precipitation green-algae chlorella  
  Abstract Alkaline precipitation of heavy metals from acidic water streams is a popular and long standing treatment process. While this process is efficient it requires the continuous addition of an alkaline material, such as lime. In the long term or when treating large volumes of effluent this process becomes expensive, with costs in the mining sector routinely exceeding millions of rands annually. The process described below utilises alkalinity generated by the alga Spirulina sp., in a continuous system to precipitate heavy metals. The design of the system separates the algal component from the metal containing stream to overcome metal toxicity. The primary treatment process consistently removed over 99% of the iron (98.9 mg/l) and between 80 and 95% of the zinc (7.16 mg/l) and lead (2.35 mg/l) over a 14-day period (20 l effluent treated). In addition the pH of the raw effluent was increased from 1.8 to over 7 in the post-treatment stream. Secondary treatment and polishing steps depend on the nature of the effluent treated. In the case of the high sulphate effluent the treated stream was passed into an anaerobic digester at a rate of 4 l/day. The combination of the primary and secondary treatments effected a removal of over 95% of all metals tested for as well as a 90% reduction in the sulphate load. The running cost of such a process would be low as the salinity and nutrient requirements for the algal culture could be provided by using tannery effluent or a combination of saline water and sewage. This would have the additional benefit of treating either a tannery or sewage effluent as part of an integrated process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Medium  
  Area Expedition Conference  
  Notes Jul; A continuous process for the biological treatment of heavy metal contaminated acid mine water; Isi:000081142100017; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9937.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9937 Serial 26  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: