toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yeon, K.-M.; Park, J.-S.; Lee, C.-H.; Kim, S.-M. openurl 
  Title Membrane coupled high-performance compact reactor: A new MBR system for advanced wastewater treatment Type Journal Article
  Year 2005 Publication Water Res Abbreviated Journal  
  Volume 39 Issue 10 Pages 1954-1961  
  Keywords (up)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Membrane coupled high-performance compact reactor: A new MBR system for advanced wastewater treatment; 1674274289; UB Bayreuth <703> TU Berlin <83> UB Braunschweig <84> SUB Bremen <46> UB Cottbus <Co 1> SLUB Dresden <14> SUB Goettingen <7> SUB+Uni Hamburg <18> TUB Hamburg <830> TIB/UB Hannover <89> UB Ilmenau <Ilm 1> UB Karlsruhe <90> ULB + FH Merseburg <3/55> BSB München <12> Österreichische ZB Physik, Wie; OLC-SSG Technik – Online Contents-Sondersammelgebiete Approved no  
  Call Number CBU @ c.wolke @ 2188 Serial 201  
Permanent link to this record
 

 
Author Chua, A.S.M.; Takabatake, H.; Satoh, H.; Mino, T. openurl 
  Title Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH, sludge retention time (SRT), and acetate concentration in influent Type Journal Article
  Year 2003 Publication Water Res Abbreviated Journal  
  Volume 37 Issue 15 Pages 3602-3611  
  Keywords (up)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH, sludge retention time (SRT), and acetate concentration in influent; 1647413788; UB Bayreuth <703> TU Berlin <83> UB Braunschweig <84> SUB Bremen <46> UB Cottbus <Co 1> SLUB Dresden <14> SUB Goettingen <7> SUB+Uni Hamburg <18> TUB Hamburg <830> TIB/UB Hannover <89> UB Ilmenau <Ilm 1> UB Karlsruhe <90> ULB + FH Merseburg <3/55> BSB München <12> UB Stuttgart <93> UB Hohenheim <100> UB Trier <385> Österreichische ZB Physik, Wie; OLC-SSG Technik – Online Contents-Sondersammelgebiete Approved no  
  Call Number CBU @ c.wolke @ 2160 Serial 417  
Permanent link to this record
 

 
Author Hulshof, A.H.M.; Blowes, D.W.; Douglas Gould, W. url  openurl
  Title Evaluation of in situ layers for treatment of acid mine drainage: A field comparison Type Journal Article
  Year 2006 Publication Water Res Abbreviated Journal  
  Volume 40 Issue 9 Pages 1816-1826  
  Keywords (up) mine water Pollution and waste management non radioactive Groundwater problems and environmental effects acid mine drainage organic carbon oxidation microbial activity drainage groundwater pollution Bacteria microorganisms Contamination Groundwater Barriers Drainage Treatment  
  Abstract Reactive treatment layers, containing labile organic carbon, were evaluated to determine their ability to promote sulfate reduction and metal sulfide precipitation within a tailings impoundment, thereby treating tailings effluent prior to discharge. Organic carbon materials, including woodchips and pulp waste, were mixed with the upper meter of tailings in two separate test cells, a third control cell contained only tailings. In the woodchip cell sulfate reduction rates were 500 mg L-1 a-1, (5.2 mmol L-1 a-1) this was coupled with the gradual removal of 350 mg L-1 Zn (5.4 mmol L-1). Decreased δ13CDIC values from -3‰ to as low as -12‰ indicated that sulfate reduction was coupled with organic carbon oxidation. In the pulp waste cell the most dramatic change was observed near the interface between the pulp waste amended tailings and the underlying undisturbed tailings. Sulfate reduction rates were 5000 mg L-1 a-1 (52 mmol L-1 a-1), Fe concentrations decreased by 80–99.5% (148 mmol L-1) and Zn was consistently <5 mg L-1. Rates of sulfate reduction and metal removal decreased as the pore water migrated upward into the shallower tailings. Increased rates of sulfate reduction in the pulp waste cell were consistent with decreased δ13CDIC values, to as low as -22‰, and increased populations of sulfate reducing bacteria. Lower concentrations of the nutrients, phosphorus, organic carbon and nitrogen in the woodchip material contribute to the lower sulfate reduction rates observed in the woodchip cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes May; Evaluation of in situ layers for treatment of acid mine drainage: A field comparison; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10040.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 10040 Serial 49  
Permanent link to this record
 

 
Author Davison, W. url  openurl
  Title Neutralizing Strategies For Acid Waters – Sodium And Calcium Products Generate Different Acid Neutralizing Capacities Type Journal Article
  Year 1988 Publication Water Res Abbreviated Journal  
  Volume 22 Issue 5 Pages 577-583  
  Keywords (up) mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Neutralizing Strategies For Acid Waters – Sodium And Calcium Products Generate Different Acid Neutralizing Capacities; Wos:A1988p420900008; Times Cited: 8; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 9085 Serial 90  
Permanent link to this record
 

 
Author Jong, T. url  openurl
  Title Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor Type Journal Article
  Year 2006 Publication Water Research Abbreviated Journal  
  Volume 40 Issue 13 Pages 2561-2571  
  Keywords (up) mine water treatment  
  Abstract The aim of this study was to operate an upflow anaerobic packed bed reactor (UAPB) containing sulfate reducing bacteria (SRB) under acidic conditions similar to those found in acid mine drainage (AMD). The UAPB was filled with sand and operated under continuous flow at progressively lower pH and was shown to be capable of supporting sulfate reduction at pH values of 6.0, 5.0, 4.5, 4.0 and 3.5 in a synthetic medium containing 53.5 mmol l(-1) lactate. Sulfate reduction rates of 553-1052 mmol m(-3) d(-1) were obtained when the influent solution pH was progressively lowered from pH 6.0 to 4.0, under an optimal flow rate of 2.61 ml min(-1). When the influent pH was further lowered to pH 3.5, sulfate reduction was substantially reduced with only about 1% sulfate removed at a rate of 3.35 mmol m(-3) d(-1) after 20 days of operation. However, viable SRB were recovered from the column, indicating that the SRB population was capable of surviving and metabolizing at low levels even at pH 3.5 conditions for at least 20 days. The changes in conductivity in the SRB column did not always occur with changes in pH and redox potential, suggesting that conductivity measurements may be more sensitive to SRB activity and could be used as an additional tool for monitoring SRB activity. The bioreactor containing SRB was able to reduce sulfate and generate alkalinity even when challenged with influent as low as pH 3.5, indicating that such treatment systems have potential for bioremediating highly acidic, sulfate contaminated waste waters. (c) 2006 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor; Wos:000239469400012; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16929 Serial 108  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: