toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wiessner, A. url  openurl
  Title The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke Type Journal Article
  Year 1998 Publication Colloids and Surfaces a-Physicochemical and Engineering Aspects Abbreviated Journal  
  Volume 139 Issue (up) 1 Pages 91-97  
  Keywords mine water treatment  
  Abstract To study the functions of activated carbon and activated coke adsorption for the treatment of highly contaminated discolored industrial wastewater with a wide molecular size distribution of organic compounds, the deposited lignite pyrolysis wastewater from a filled open-cast coal mine was used for continuous and discontinuous experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke; Wos:000074411100012; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17147 Serial 133  
Permanent link to this record
 

 
Author Henderson, A. url  openurl
  Title The implementation of paste fill at the Henty Gold Mine Type Journal Article
  Year 1998 Publication Minefill'98 Abbreviated Journal  
  Volume 98 Issue (up) 1 Pages 299-304  
  Keywords mine water treatment  
  Abstract The Henty Gold Mine, located ill Western Tasmania uses innovative solutions to effectively manage a mining operation in an environmentally sensitive setting and has been presented with several environmental awards. Fill is required as part of the mining method to provide passive ground support, minimise rock exposure and ensure maximum recovery of the small but high-grade orebody. The use of the whole portion of leach residue in the backfill reduces the surface tailing disposal requirements. Therefore, High Density Paste Fill (HDPF) has been selected as the most appropriate fill method to meet these objectives. Additional benefits include the minimisation of excess water from fill and the subsequent need for the collection and treatment of water and slimes. There are minimal equipment requirements during placement, thereby optimising mine resources for production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The implementation of paste fill at the Henty Gold Mine; Isip:000074225800048; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17142 Serial 181  
Permanent link to this record
 

 
Author Van Hille, R.P.; Boshoff, G.A.; Rose, P.D.; Duncan, J.R. url  openurl
  Title A continuous process for the biological treatment of heavy metal contaminated acid mine water Type Journal Article
  Year 1999 Publication Resour. Conserv. Recycl. Abbreviated Journal  
  Volume 27 Issue (up) 1-2 Pages 157-167  
  Keywords mine water treatment biological treatment heavy metal acid mine water alkaline precipitation green-algae chlorella  
  Abstract Alkaline precipitation of heavy metals from acidic water streams is a popular and long standing treatment process. While this process is efficient it requires the continuous addition of an alkaline material, such as lime. In the long term or when treating large volumes of effluent this process becomes expensive, with costs in the mining sector routinely exceeding millions of rands annually. The process described below utilises alkalinity generated by the alga Spirulina sp., in a continuous system to precipitate heavy metals. The design of the system separates the algal component from the metal containing stream to overcome metal toxicity. The primary treatment process consistently removed over 99% of the iron (98.9 mg/l) and between 80 and 95% of the zinc (7.16 mg/l) and lead (2.35 mg/l) over a 14-day period (20 l effluent treated). In addition the pH of the raw effluent was increased from 1.8 to over 7 in the post-treatment stream. Secondary treatment and polishing steps depend on the nature of the effluent treated. In the case of the high sulphate effluent the treated stream was passed into an anaerobic digester at a rate of 4 l/day. The combination of the primary and secondary treatments effected a removal of over 95% of all metals tested for as well as a 90% reduction in the sulphate load. The running cost of such a process would be low as the salinity and nutrient requirements for the algal culture could be provided by using tannery effluent or a combination of saline water and sewage. This would have the additional benefit of treating either a tannery or sewage effluent as part of an integrated process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Medium  
  Area Expedition Conference  
  Notes Jul; A continuous process for the biological treatment of heavy metal contaminated acid mine water; Isi:000081142100017; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9937.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9937 Serial 26  
Permanent link to this record
 

 
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Bennett, T.A.; Puls, R.W. url  openurl
  Title Treatment of inorganic contaminants using permeable reactive barriers Type Journal Article
  Year 2000 Publication J Contam Hydrol Abbreviated Journal  
  Volume 45 Issue (up) 1-2 Pages 123-137  
  Keywords acid mine drainage; adsorption; agricultural waste; aquifers; chemical reactions; chromium; concentration; contaminant plumes; decontamination; disposal barriers; dissolved materials; drainage; ground water; heavy metals; metals; nitrate ion; nutrients; permeability; phosphate ion; pollution; pump-and-treat; remediation; sulfate ion; waste disposal; water treatment mine water treatment Remediation Groundwater Metals Nutrients Radionuclides  
  Abstract Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4 and SO4. Small-scale field studies have demonstrated treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4 and SO4. Permeable reactive barriers composed of zero-valent iron have been used in full-scale installations for the treatment of Cr, U, and Tc. Solid-phase organic carbon in the form of municipal compost has been used to remove dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn. Dissolved nutrients, including NO3 and PO4, have been removed from domestic septic-system effluent and agricultural drainage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-7722 ISBN Medium  
  Area Expedition Conference  
  Notes Sept.; Treatment of inorganic contaminants using permeable reactive barriers; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9401.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 9401 Serial 46  
Permanent link to this record
 

 
Author Arnekleiv, J.V. url  openurl
  Title Downstream Effects Of Mine Drainage On Benthos And Fish In A Norwegian River – A Comparison Of The Situation Before And After River Rehabilitation Type Journal Article
  Year 1995 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 52 Issue (up) 1-2 Pages 35-43  
  Keywords mine water treatment  
  Abstract Parts of the Norwegian river Gaula are strongly polluted from former mining activity in the area. In the most polluted parts of the river the concentration levels of Cu and Zn in 1986-1987 were up to 155 mug l-1 and 186 mug l-1, respectively. In 1989 the spoil heaps in the mining area were covered with protective layers of moss-covered plastic. In 1991-1992 the concentration levels of Cu and Zn had decreased by 75% and 65%, respectively. Animal life in the polluted area seemed to be strongly affected by the trace metals in 1986-1987. The 1991-1992 results showed a marked increase in the number of species and in the number of individuals of each species of Ephemeroptera and Plecoptera, compared with the results from 1986-87. Good correlations were found between the concentrations of Cu in the water and both the number of species and the number of individuals of Ephemeroptera and Plecoptera. Analysis of the species Baetis rhodani, Diura nanseni and Rhyacophila nubila showed an average total dry weight content of Cu up to 264 mug g-1, of Zn up to 1930 mug g-1 and of Cd up to 16 mug g-1. The contents of the three trace metals were significantly different from one species to another and in part between the stations for each species. In 1987 trout died after an exposure of one to two days on three test sites in the river, whereas in 1991-1992 40-75% of the trout survived an exposure period of several weeks at two of the sites. Electrofishing in 1991-1992 indicated recolonization of trout in the lower parts of the former affected and uninhabitable area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Downstream Effects Of Mine Drainage On Benthos And Fish In A Norwegian River – A Comparison Of The Situation Before And After River Rehabilitation; Wos:A1995qp96600005; Times Cited: 2; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17175 Serial 88  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: