toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Isaacson, A.E.; Jeffers, T.H. isbn  openurl
  Title Acid mine drainage remediation through applied water treatment systems Pollution prevention for process engineering Type Book Chapter
  Year 1995 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; acidification; aquifer vulnerability; aquifers; chemical reactions; discharge; dissolved materials; ground water; infiltration; ion exchange; leachate; metal ores; mining; mining geology; models; open-pit mining; pollutants; pollution; preventive measures; reclamation; remediation; soils; sulfides; surface mining; surface water; techniques; toxicity; uranium ores; waste water; water treatment 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Engineering Foundation Place of Publication New York Editor Richardson, P.E.; Scheiner, B.J.; Lanzetta, F., Jr.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN 0939204533 Medium  
  Area Expedition Conference  
  Notes Acid mine drainage remediation through applied water treatment systems Pollution prevention for process engineering; GeoRef; English; 2000-063662; Engineering Foundation conference on Technical solution for pollution prevention in the mining and mineral processing industries, Palm Coast, FL, United States, Jan. 22-27, 1995 illus. Approved no  
  Call Number CBU @ c.wolke @ 6450 Serial 344  
Permanent link to this record
 

 
Author Diz, H.R. pdf  openurl
  Title Chemical and biological treatment of acid mine drainage for the removal of heavy metals and acidity Type Book Whole
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; copper; effluents; ferrous iron; heavy metals; iron; manganese; metals; nickel; oxidation; pH; pollution; precipitation; rates; tailings; temperature; waste water; zinc 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Virginia Polytechnic Institute and State University, Place of Publication Blacksburg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Chemical and biological treatment of acid mine drainage for the removal of heavy metals and acidity; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6316 Serial 400  
Permanent link to this record
 

 
Author Berg, G.J.; Arthur, B. isbn  openurl
  Title Proposed mine water treatment in Wisconsin Type Book Chapter
  Year 1999 Publication Sudbury '99; mining and the environment II; Conference proceedings Abbreviated Journal  
  Volume Issue Pages  
  Keywords metals mines pollutants pollution remediation tailings United States waste water water water management water quality water resources water treatment Wisconsin 22, Environmental geology  
  Abstract Water quality standards are driving wastewater effluent limits to ultra-low levels in the nanogram/L range. Standards are proposed that require discharges to match background water quality. The new ultra-low level standards require cautious sampling techniques, super clean laboratory methods and more advanced treatment technologies. This paper follows a case history through water quality standards for ultra-low metals, laboratory selection, and the design of a wastewater treatment system that can meet the water quality standards which are required to permit a proposed copper and zinc mine in Northern Wisconsin. A high degree of care must be taken when sampling for ultra-low level metals. Both surface water and treated effluent samples present new challenges. Sampling methods used must assure that there are no unwanted contaminants being introduced to the samples. The selection of a laboratory is as critical as the construction of a state of the art wastewater treatment system. Treatment methods such as lime and sulfide precipitation have had a high degree of success, but they do have limitations. Given today's ultra-low standards, it is necessary to assess the ability of reverse osmosis, deionization, and evaporation to provide the high level of treatment required.  
  Address  
  Corporate Author Thesis  
  Publisher Sudbury Environmental Place of Publication Sudbury Editor Goldsack, D.; Belzile, N.; Yearwood, P.; Hall, G.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN 0886670470 Medium  
  Area Expedition Conference  
  Notes Proposed mine water treatment in Wisconsin; GeoRef; English; 2000-043747; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement II, Sudbury, ON, Canada, Sept. 13-17, 1999 illus. incl. 5 tables Approved no  
  Call Number CBU @ c.wolke @ 16588 Serial 451  
Permanent link to this record
 

 
Author Benkovics, I.; Csicsák, J.; Csövári, M.; Lendvai, Z.; Molnár, J. openurl 
  Title Mine Water Treatment – Anion-exchange and Membrane Process Type Journal Article
  Year 1997 Publication Proceedings, 6th International Mine Water Association Congress, Bled, Slovenia Abbreviated Journal  
  Volume 1 Issue Pages 149-157  
  Keywords uranium mining Hungary Mecsek Ore Mining Company waste water mine water chemistry nano-filtration reverse osmosis pilot plant mine water treatment treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Mine Water Treatment – Anion-exchange and Membrane Process; 1; FG 6 Abb., 2 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9530 Serial 455  
Permanent link to this record
 

 
Author Ye, Z.H.; Whiting, S.N.; Qian, J.H.; Lytle, C.M.; Lin, Z.Q.; Terry, N. url  openurl
  Title Trace element removal from coal ash leachate by a 10-year-old constructed wetland Type Journal Article
  Year 2001 Publication J. Environ. Qual. Abbreviated Journal  
  Volume 30 Issue 5 Pages 1710-1719  
  Keywords acid mine drainage; Alabama; ash; bioaccumulation; boron; cadmium; constructed wetlands; environmental analysis; environmental effects; iron; Jackson County Alabama; Juncus effusus; leachate; manganese; metals; pH; pollutants; pollution; remediation; soils; sulfur; trace elements; Typha latifolia; United States; vegetation; waste water; wetlands; Widows Creek; Widows Creek Steam Plant; zinc; Typha; Juncus 22, Environmental geology  
  Abstract This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. ne trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e., >10 yr after construction).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0047-2425 ISBN Medium  
  Area Expedition Conference  
  Notes Aug 1; Trace element removal from coal ash leachate by a 10-year-old constructed wetland; 2002-017274; References: 33; illus. incl. 2 tables United States (USA); file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/5703.pdf; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5703 Serial 76  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: