toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gusek, J.J. openurl 
  Title Passive-treatment of acid rock drainage: what is the potential bottom line? Type Journal Article
  Year 1995 Publication Min. Eng. Abbreviated Journal  
  Volume 47 Issue 3 Pages (down) 250-253  
  Keywords mining acid drainage passive treatment system 3 Geology  
  Abstract Passive-treatment systems that mitigate acid-rock drainage from coal mines have been operating since the mid-1980s. Large systems at metal mines are being contemplated. A typical man-made passive-treatment-system can mimic a natural wetland by employing the same geochemical principles. Passive-treatment systems, however, are engineered to optimize the biogeochemical processes occurring in a natural wetland ecosystem. The passive-treatment methodology holds promise over chemical neutralization because large volumes of sludge are not generated. Metals may be precipitated as oxides, sulfides or carbonates in the passive-treatment system substrate. The key goal of a passive-treatment system is the long-term immobilization of metals in the substrate materials. The passive-treatment technique may not be applicable in all mine-drainage situations. -from Author  
  Address Knight-Piesold & Co, 1050 17th St., Suite 500, Denver, CO, 80265- 0550, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Passive-treatment of acid rock drainage: what is the potential bottom line?; (1121863); 95k-12693; Using Smart Source Parsing pp; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17638 Serial 365  
Permanent link to this record
 

 
Author Jenk, U.; Paul, M.; Ziegenbalg, G.; Klinger, C. isbn  openurl
  Title Type Book Whole
  Year 2004 Publication Abbreviated Journal  
  Volume Issue Pages (down) 245-252  
  Keywords hydrogeology mining water Germany Königstein WISMUT flooding hydrochemistry methods treatment source immobilisation reactive barrier  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher University of Newcastle Place of Publication 1 Editor Jarvis Adam, P.; Dudgeon Bruce, A.; Younger Paul, L.  
  Language Summary Language Original Title  
  Series Editor Series Title mine water 2004 – Proceedings International Mine Water Association Symposium Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-9543827-2-2 Medium  
  Area Expedition Conference  
  Notes Alternative Methods of Mine Water Treatment – Feasibility and technical Limitations for a Full-Scale Application at WISMUT’s Königstein Mine Site (Germany); 1; AMD ISI | Wolkersdorfer; FG 'de' 5 Abb., 1 Tab. Approved no  
  Call Number CBU @ c.wolke @ 9706 Serial 338  
Permanent link to this record
 

 
Author Whitlock, J.L. openurl 
  Title Biological Detoxification of Precious Metal Processing Wastewaters Type Journal Article
  Year 1990 Publication Geomicrobiol. J. Abbreviated Journal  
  Volume 8 Issue 3-4 Pages (down) 241-249  
  Keywords biofilm cyanide detoxification mining operation precious metals pseudomonas rotating biological contactors waste-water  
  Abstract A biological treatment plant is utilized at the Homestake Mine in Lead, SD, to effect detoxification of a daily discharge of 4 million gallons of wastewater. The wastewater matrix requiring treatment contains cyanide, ammonia, toxic heavy metals, anda variable component of toxic chemicals associated with extractive metallurgy and mining operations. Rotating biological contactors (RBCs) are used to attach the biofilm. Cyanides and heavy metals concentrations are reduced by 95-98%. The treated discharge makes up as much as 60% of the total flow in a cold-water trout fishery. This receiving stream, which remained lifeless for over 100 years as a mine drainage, has now become an established trout fishery and recently yielded a state record trout.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0149-0451 ISBN Medium  
  Area Expedition Conference  
  Notes Biological Detoxification of Precious Metal Processing Wastewaters; Isi:A1990gr30500007; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17482 Serial 213  
Permanent link to this record
 

 
Author Younger, P.L. url  openurl
  Title Holistic remedial strategies for short- and long-term water pollution from abandoned mines Type Journal Article
  Year 2000 Publication Transactions of the Institution of Mining and Metallurgy Section a-Mining Technology Abbreviated Journal  
  Volume 109 Issue Pages (down) A210-A218  
  Keywords abandoned mines acid mine drainage Europe mines mining planning pollution remediation United Kingdom water pollution Western Europe  
  Abstract Where mining proceeds below the water-table-as it has extensively in Britain and elsewhere-water ingress is not only a hindrance during mineral extraction but also a potential liability after abandonment. This is because the cessation of dewatering that commonly follows mine closure leads to a rise in the water-table and associated, often rapid, changes in the chemical regime of the subsurface. Studies over the past two decades have provided insights into the nature and time-scales of these changes and provide a basis for rational planning of mine-water management during and after mine abandonment. The same insights into mine-water chemistry provide hints for the efficient remediation of pollution (typically due to Fe, Mn and Al and, in some cases, Zn, Cd, Pb and other metals). Intensive treatment (by chemical dosing with enhanced sedimentation or alternative processes, such as sulphidization or reverse osmosis) is often necessary only during the first few years following complete flooding of mine voids. Passive treatment (by the use of gravity-flow geochemical reactors and wetlands) may be both more cost-effective and ecologically more responsible in the long term. By the end of 1999 a total of 28 passive systems had been installed at United Kingdom mine sites, including examples of system types currently unique to the United Kingdom. Early performance data for all the systems are summarized and shown to demonstrate the efficacy of passive treatment when appropriately applied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0371-7844 ISBN Medium  
  Area Expedition Conference  
  Notes Holistic remedial strategies for short- and long-term water pollution from abandoned mines; Wos:000167240600013; Times Cited: 2; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17458 Serial 126  
Permanent link to this record
 

 
Author Gerth, A.; Kießig, G. isbn  openurl
  Title Type Book Whole
  Year 2001 Publication Abbreviated Journal  
  Volume Issue Pages (down) 173-180  
  Keywords mining uranium mining passive treatment Saxony mine water treatment  
  Abstract Treatment of radioactively-contaminated and metal-laden mine waters and of seepage fiom tailings ponds and waste rock piles is among the key issues facing WISMUT GmbH in their task to remediate the legacy of uranium mining and processing in the Free States of saxony and rhuringia, Federal Republic of Germany. Generally, contaminant loads of feed waters wn aimnisn over time. At a certain level of costs for the removal of one contaminant unit, continued operation of conventional water treatment plants can hardly be justified any longer. As treatment is still required for water protection, there is an urgent need for-the development and implementation of more cost efficient technologies. WISMUT GmbH and BioPlanta GmbH have studied the suitability of helophye species for contaminant removal from mine waters. In a fust step, original waters were used for an in vitro bioassay. The test results allowed for the determination of the effects of biotic and abiotic factors on helophy'tes'tolerancer ange, growth, and uptake capability of radionuclides and metals. Test series were carried out using Phiagmites australis, Carex disticha, Typha latifolia, and Juncus effusus. Relevant cont-aminant components of the mine waters under investigation included uraniunl iron, arsenic, manganese, nickel, and copper. Investigations led to a number of recommendations conceming plant selection for specific water treatment needs. In a second step, based on these results, a constructed wetland was built in l99g as a pilot plant for the treatment of flood waters liom the pöhla-Tellerhäuser mine and went on-line. Relevant constituents of the neutral flood waters include radium, iron, and arsenic. This wetland specifically uses both physico-chemical and microbiological processes as well as contaminant accumulation by helophytes to achieve the treatment objectives. with the pilot plant in operation for three years now, average removal rates achieved are 95 Yo for kon, 86 yo for arsenic, and 75 % for raäium. WISMUT GmbH intends to put a number of other projects of passive/biological mine water treatment into operation before the end of 2001_  
  Address  
  Corporate Author Thesis  
  Publisher Battelle Press Place of Publication (6)5 Editor Leeson, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Phytoremediation, wetlands and sediments Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 1-57477-115-9 Medium  
  Area Expedition Conference  
  Notes Passive/Biological Treatment of Waters contaminated by Uranium Mining; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb., 4 Tab. Approved no  
  Call Number CBU @ c.wolke @ 17345 Serial 372  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: