toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Niyogi, D.K.; McKnight, D.M.; Lewis, W.M., Jr.; Kimball, B.A. openurl 
  Title Experimental diversion of acid mine drainage and the effects on a headwater stream Type Journal Article
  Year 1999 Publication Water-Resources Investigations Report Abbreviated Journal  
  Volume Wri 99-4018-A Issue Pages 123-130  
  Keywords abandoned mines acid mine drainage algae benthonic taxa biomass biota Colorado experimental studies heavy metals Lake County Colorado Leadville Colorado metals mines pH Plantae pollution remediation Saint Kevin Gulch Colorado tracers United States USGS water zinc  
  Abstract An experimental diversion of acid mine drainage was set up near an abandoned mine in Saint Kevin Gulch, Colorado. A mass-balance approach using natural tracers was used to estimate flows into Saint Kevin Gulch. The diversion system collected about 85 percent of the mine water during its first year of operation (1994). In the first 2 months after the diversion, benthic algae in an experimental reach (stream reach around which mine drainage was diverted) became more abundant as water quality improved (increase in pH, decrease in zinc concentrations) and substrate quality changed (decrease in rate of metal hydroxide deposition). Further increases in pH to levels above 4.6, however, led to lower algal biomass in subsequent years (1995-97). An increase in deposition of aluminum precipitates at pH greater than 4.6 may account for the suppression of algal biomass. The pH in the experimental reach was lower in 1998 and algal biomass increased. Mine drainage presents a complex, interactive set of stresses on stream ecosystems. These interactions need to be considered in remediation goals and plans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0092-332x ISBN Medium  
  Area Expedition (up) Conference  
  Notes Experimental diversion of acid mine drainage and the effects on a headwater stream; 2; GeoRef: 2001-017199 als Datei vorhanden 4 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17398 Serial 286  
Permanent link to this record
 

 
Author Nairn, R.W.; Griffin, B.C.; Strong, J.D.; Hatley, E.L. openurl 
  Title Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma Type Book Chapter
  Year 2001 Publication Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.18 Abbreviated Journal  
  Volume Issue Pages 579-584  
  Keywords abandoned mines acid mine drainage collapse structures constructed wetlands environmental analysis geologic hazards ground water human ecology Kansas land subsidence lead metals mines Missouri Oklahoma pollution reclamation remediation springs Superfund sites surface water Tar Creek Superfund Site United States water resources wetlands zinc 22, Environmental geology  
  Abstract The Tar Creek Superfund Site is a portion of the abandoned lead and zinc mining area known as the Tri-State Mining District (OK, KS and MO) and includes over 100 square kilometers of disturbed land surface and contaminated water resources in extreme northeastern Oklahoma. Underground mining from the 1890s through the 1960s degraded over 1000 surface hectares, and left nearly 50 km of tunnels, 165 million tons of processed mine waste materials (chat), 300 hectares of tailings impoundments and over 2600 open shafts and boreholes. Approximately 94 million cubic meters of contaminated water currently exist in underground voids. In 1979, metal-rich waters began to discharge into surface waters from natural springs, bore holes and mine shafts. Six communities are located within the boundaries of the Superfund site. Approximately 70% of the site is Native American owned. Subsidence and surface collapse hazards are of significant concern. The Tar Creek site was listed on the National Priorities List (NPL) in 1983 and currently receives a Hazard Ranking System score of 58.15, making Tar Creek the nation's number one NPL site. A 1993 Indian Health Service study demonstrated that 35% of children had blood lead levels above thresholds dangerous to human health. Recent remediation efforts have focused on excavation and replacement of contaminated residential areas. In January 2000, Governor Frank Keating's Tar Creek Task Force was created to take a “vital leadership role in identifying solutions and resources available to address” the myriad environmental problems. The principle final recommendation was the creation of a massive wetland and wildlife refuge to ecologically address health, safety, environmental, and aesthetic concerns. Additional interim measures included continuing the Task Force and subcommittees; study of mine drainage discharge and chat quality; construction of pilot treatment wetlands; mine shaft plugging; investigations of bioaccumulation issues; establishment of an authority to market and export chat, a local steering committee, and a GIS committee; and development of effective federal, state, tribal, and local partnerships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Vincent, R.; Burger, J.A.; Marino, G.G.; Olyphant, G.A.; Wessman, S.C.; Darmody, R.G.; Richmond, T.C.; Bengson, S.A.; Nawrot, J.R.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma; GeoRef; English; 2002-036287; 18th annual national meeting of the American Society for Surface Mining and Reclamation; Land reclamation, a different approach, Albuquerque, NM, United States, June 3-7, 2001 References: 20; illus. incl. 1 table Approved no  
  Call Number CBU @ c.wolke @ 16526 Serial 290  
Permanent link to this record
 

 
Author Mustikkamaki, U.-P. openurl 
  Title Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation Type Journal Article
  Year 2000 Publication Vuoriteollisuus = Bergshanteringen Abbreviated Journal  
  Volume 58 Issue 1 Pages 44-47  
  Keywords acid mine drainage anaerobic environment bacteria biodegradation environmental analysis Europe filters Finland metals Outokummun Mine peat pollutants pollution reduction Scandinavia sediments sulfate ion Western Europe zinc 22, Environmental geology  
  Abstract Acid mine drainage (AMD) is one of the most serious environmental problems in the metal-mining industry. AMD is formed by the chemical and bacterial oxidation of sulphide minerals, and it is characterized by low pH values and high sulphate and metals content. The most common method to treat AMD is chemical neutralization. The chemical treatment requires high capital and operating costs and its use is problematic at the closed mines sites. Outokumpu has studied and used sulphate reducing bacteria (SRB) as an alternative method for the treatment of AMD. SRB existing in many natural anaerobic aqueous environments can reduce sulphate to sulphide which precipitates metals as extremely insoluble metal sulphides. Full scale experiments were begun in summer 1995 in the Ruostesuo open pit (depth 46 m) by adding liquid manure as a source of bacteria and press-juice as a growth substrate. The average Zn content of the whole column has decreased from 3,5 mg/l to 0,8 mg/l and below 25 m zinc is 0 mg/l. Similar results have been reached with nickel in the Kotalahti old nickel mine, where bacteria were brought in 1996. We have found that the same bacterial mechanism acts in peat-limestone filters, which Outokumpu has built at several mine sites since 1993.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0042-9317 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation; 2001-069868; illus. incl. 3 tables Finland (FIN); GeoRef; Finnish Approved no  
  Call Number CBU @ c.wolke @ 16560 Serial 291  
Permanent link to this record
 

 
Author Mitchell, P.; Wheaton, A. isbn  openurl
  Title From environmental burden to natural resource; new reagents for cost-effective treatment of, and metal recovery from, acid rock drainage Type Book Chapter
  Year 1999 Publication Sudbury '99; Mining and the environment II; Conference proceedings Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage Bunker Hill Mine cost decontamination Idaho metal ores mines mitigation natural resources pollution reagents recovery Shoshone County Idaho sludge United States zinc ores 22 Environmental geology 27A Economic geology, geology of ore deposits  
  Abstract Acid rock drainage remains the greatest environmental issue faced by the mining sector and as the new millennium approaches, low capital/operating cost treatments remain elusive. Therefore as part of an ongoing process to develop a leading edge, innovative and cost-effective approach, pilot trials were conducted by KEECO in collaboration with the New Bunker Hill Mining Company on a substantial and problematic metal-contaminated acid flow, emanating from underground workings at the Bunker Hill Mine, Idaho. The aims of the work were fourfold. First to assess the capacity of KEECO's unique Silica Micro Encapsulation (SME) reagents and associated dosing systems to cost-effectively decontaminate the acid flow to stringent standards set by the U.S. Environmental Protection Agency (USEPA), where alternative and standard technologies had failed. Second, to demonstrate that treatment using a compact system suitable for underground installation. Third, to demonstrate that the treatment sludge had enhanced chemical stability in absolute terms and relative to standard approaches. Fourth, to examine the potential for resource recovery via sequential precipitation. Although the focus to date has been the development of a cost-effective treatment technology, the latter aim was considered essential in light of the growing pressure on all industrial sectors to develop tools for environmentally sustainable economic growth and the growing demands of stakeholders for improved resource usage and recycling. Two phases of work were undertaken: a laboratory-based scoping exercise followed by installation within the mine workings of a compact reagent delivery/shear mixing unit capable of treating the full flow of 31 L s (super -1) . At a dose rate of 2.0 g L (super -1) (equivalent to a final treated water pH range of 7-9), the SME reagent KB-1 reduced metal concentrations to levels approaching the U.S. Drinking Water Standards, which no other treatment piloted at the site had achieved. Based on the USEPA's Toxicity Characteristic Leaching Procedure, the sludge arising from the treatment was classified as non-hazardous. Operating costs compared favourably with those of lime use, while estimated capital costs were considerably lower due to the compact nature of the reagent delivery system and the rapid settling characteristics of the treatment sediment. Resource recovery was attempted using a two-stage selective precipitation approach. The first stage involved pH adjustment to 5.5 (by addition of 1.5 g L (super -1) of KB-1) to produce a sludge enriched in aluminium, iron and manganese, with lesser amounts of arsenic, nickel, lead and zinc. Further KB-1 addition to a total of 2.1 g L (super -1) generated sludge enriched in zinc (33% by dry weight), demonstrating that resource recovery is theoretically feasible. Further work on downstream processing is required, although it is considered that the most likely route for zinc metal recovery will be high temperature/pressure due to the chemically inert nature of the zinc-rich sediment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Goldsack, D.E.; Belzile, N.; Yearwood, P.; Hall, G.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0886670470 Medium  
  Area Expedition (up) Conference  
  Notes From environmental burden to natural resource; new reagents for cost-effective treatment of, and metal recovery from, acid rock drainage; GeoRef; English; 2000-048642; Sudbury '99; Mining and the environment II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 3; illus. incl. 5 tables Approved no  
  Call Number CBU @ c.wolke @ 16593 Serial 296  
Permanent link to this record
 

 
Author Kuyucak, N. openurl 
  Title Acid mine drainage; treatment options for mining effluents Type Journal Article
  Year 2001 Publication Mining Environmental Management Abbreviated Journal  
  Volume 9 Issue 2 Pages 12-15  
  Keywords acid mine drainage; alkalinity; cadmium; chemical reactions; copper; cyanides; decontamination; degradation; effluents; flotation; heavy metals; lead; lime; metals; mines; nickel; oxidation; pH; physicochemical properties; pollution; reagents; reduction; remediation; seepage; sludge; solid waste; solvents; stability; tailings; toxic materials; toxicity; waste disposal; water quality; zinc  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-4218 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Acid mine drainage; treatment options for mining effluents; 2001-050827; References: 23; illus. United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5723 Serial 324  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: