toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Govind, R. url  openurl
  Title Treatment of acid mine drainage using membrane bioreactors Type Journal Article
  Year 2001 Publication Bioremediation of Inorganic Compounds Abbreviated Journal  
  Volume 6 Issue 9 Pages 1-8  
  Keywords mine water treatment  
  Abstract Acid mine drainage is a severe water pollution problem attributed to past mining activities. The exposure of the post-mining mineral residuals to water and air results in a series of chemical and biological oxidation reactions, that produce an effluent which is highly acidic and contains high concentrations of various metal sulfates. Several treatment techniques utilizing sulfate reducing bacteria have been proposed in the past; however few of them have been practically applied to treat acid mine drainage. This research deals with membrane reactor studies to treat the acid mine drainage water from Berkeley Pit in Butte, Montana using hydrogen-consuming sulfate reducing bacteria. Eventually, the membrane reactor system can be applied towards the treatment of acid mine drainage to produce usable water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Treatment of acid mine drainage using membrane bioreactors; Isip:000175098600001; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17051 Serial 162  
Permanent link to this record
 

 
Author Rajaram, V. url  openurl
  Title Methodology for estimating the costs of treatment of mine drainage Type Journal Article
  Year 2001 Publication Proceedings of the Seventeenth International Mining Congress and Exhibition of Turkey Abbreviated Journal  
  Volume Issue Pages 191-201  
  Keywords mine water treatment  
  Abstract Tetra Tech developed worksheets for the U.S. Department of the Interior, Office of Surface Mining (OSM) to allow a consistent, accurate, and rapid method of estimating the costs of long-term treatment of mine drainage at coal mines, in accordance with the Surface Mining Control and Reclamation Act (SMCRA) of 1977. This paper describes the rationale for the worksheets and how they can be used to calculate costs for site-specific conditions. Decision trees for selection of alternative treatments for acidic or alkaline mine drainage are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Methodology for estimating the costs of treatment of mine drainage; Isip:000171428500021; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17065 Serial 163  
Permanent link to this record
 

 
Author Swayze, G.A. url  openurl
  Title Imaging spectroscopy: A new screening tool for mapping acidic mine waste Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1531-+  
  Keywords mine water treatment  
  Abstract Imaging spectroscopy is a relatively new remote sensing tool that provides a rapid method to screen entire mining districts for potential sources of surface acid drainage. An imaging spectrometer known as the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) measures light reflected from the surface in 224 spectral channels from 0.4 – 2.5 mum. Spectral data from this instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, Colorado. Here, the process of pyrite oxidation at the surface produces acidic water that is gradually neutralized as it drains away from mine waste, depositing a central jarosite zone surrounded by a jarosite + goethite zone, in turn surrounded by a goethite zone with a discontinuous hematite rim zone. Leaching tests show that pH is most acidic in the jarosite and jarosite+goethite zones and is near-neutral in the goethite zone. Measurements indicate that metals leach from minerals and amorphous materials in the jarosite + goethite and jarosite zones at concentrations 10 – 50 times higher than from goethite zone minerals. Goethite zones that fully encircle mine waste may indicate some attenuation of leachate metals and thus reduced metal loading to streams. The potential for impact by acidic drainage is highest where streams intersect the jarosite and jarosite + goethite zones. In these areas, metal-rich acidic surface runoff may flow directly into streams. The U.S. Environmental Protection Agency estimates (U.S. EPA, 1998) that mineral maps made from AVIRIS data at Leadville have accelerated remediation efforts by two years and saved over $2 million in cleanup costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Imaging spectroscopy: A new screening tool for mapping acidic mine waste; Isip:000169875500152; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17111 Serial 164  
Permanent link to this record
 

 
Author Campbell, A. url  openurl
  Title Mitigation of acid rock drainage at the Summitville Mine Superfund Site, Colorado, USA Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1243-1250  
  Keywords mine water treatment  
  Abstract Numerous techniques for treating, controlling, and preventing acid rock drainage have been applied at the Summitville Mine Superfund Site. Challenging aspects of the remote mine site include the wide-spread occurrence of acid-generating soils and rocks, extensive surface and underground mine workings, and a cold and wet climate. Water treatment was an immediate necessity when the Government took control of the abandoned site in December of 1992. Subsequent reclamation activities have emphasized prevention and control of ARD to minimize future water treatment requirements. A combination of conventional, innovative, and experimental methods are being applied to successfully mitigate ARD at Summitville.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Mitigation of acid rock drainage at the Summitville Mine Superfund Site, Colorado, USA; Isip:000169875500124; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17110 Serial 165  
Permanent link to this record
 

 
Author McGregor, R. url  openurl
  Title The use of an in-situ porous reactive wall to remediate a heavy metal plume Type Journal Article
  Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal  
  Volume Issue Pages 1227-1232  
  Keywords mine water treatment  
  Abstract The oxidation of sulfide minerals at an ore transfer location in Western Canada has resulted in widespread contamination of underlying soil and groundwater. The oxidation of sulfide minerals has released sulfate [SO4] and heavy metals including cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn] into the groundwater. A compost-based sulfate-reducing reactive wall was installed in the path of the plume in an attempt to reduce the potential impact of the heavy metals on a down-gradient marine inlet. Monitoring of the reactive wall over a 21-month period has shown that Cu concentrations decrease from over 4000 mug/L to less than 5 mug/L. Cadmium, Ni, Pb, and Zn concentrations also show similar decreases with treated concentrations generally being observed near or below detection limits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes The use of an in-situ porous reactive wall to remediate a heavy metal plume; Isip:000169875500122; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17109 Serial 166  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: